This work employs the conceptions of neutrosophic crisp a-open and semi-a-open sets to distinguish some novel forms of weakly neutrosophic crisp open mappings; for instance, neutrosophic crisp a-open mappings, neutrosophic crisp a*-open mappings, neutrosophic crisp a**-open mappings, neutrosophic crisp semi-a-open mappings, neutrosophic crisp semi-a*-open mappings, and neutrosophic crisp semi-a**-open mappings. Moreover, the close connections between these forms of weakly neutrosophic crisp open mappings and the viewpoints of neutrosophic crisp open mappings are explained. Additionally, various theorems and related features and notes are submitted.
The goal of the research is to introduce new types of maps called semi totally Bc-continuous map and totally Bc-continuous map furthermore, study its properties. Additionally, we study the relationship of these functions and other known mappings are discussed.
The aim of this paper is to introduce a new type of proper mappings called semi-p-proper mapping by using semi-p-open sets, which is weaker than the proper mapping. Some properties and characterizations of this type of mappings are given.
The purpose of this paper is to give the condition under which every weakly closed
function is closed and to give the condition under which the concepts of weaklysemi
closed function and weakly pre-closed function are equivalent. Moreover,
characterizations and properties of weakly semi closed functions and weakly preclosed
function was given.
The purpose of this paper is to study new types of open sets in bitopological spaces. We shall introduce the concepts of L- pre-open and L-semi-p-open sets
In this paper we introduce new class of open sets called weak N-open sets and we study the relation between N-open sets , weak N-open sets and some other open sets. We prove several results about them.
We develop the previously published results of Arab by using the function under certain conditions and using G-α-general admissible and triangular α-general admissible to prove coincidence fixed point and common fixed point theorems for two weakly compatible self –mappings in complete b-metric spaces.
In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two t
... Show MoreIn this paper, we introduce weak and strong forms of ω-perfect mappings, namely the ï±-ω-perfect, weakly ï±-ω-perfect and stronglyï±-ω-perfect mappings. Also, we investigate the fundamental properties of these mappings. Finally, we focused on studying the relationship between weakly ï±-ω-perfect and stronglyï± -ω-perfect mappings.
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.