Preferred Language
Articles
/
ijs-2615
Cu-ZnO Nanostructures Synthesis and Characterization

5wt% copper doped zinc oxide (Cu-ZnO) nanostructures were prepared via the hydrothermal technique at different temperatures of 70, 100, 130, 160 and 190oC.  UV spectroscopy, FE-SEM microscopy, XRD crystallography, and EDS measurements were used for nanostructure characterization. UV spectroscopy indicated a red shift for the absorption peaks, and hence a blue shift for the energy gap values, as temperature increased from 70 to 190oC. FE-SEM microscopy showed an increase in the average lengths and diameters of the nanostructures following a similar increase in temperature. XRD crystallography indicated decent structural patterns for Cu-ZnO nanostructures with an increase in crystallite size upon temperature increase. Interestingly, three unprecedented extra indices appeared in the structural pattern at 190oC, which might indicate a configuration of hexagonal crystallite with three extra planes. EDS measurements indicated the sole presence of Cu, Zn and O.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
Fabricated of Cu Doped ZnO Nanoparticles for Solar Cell Application

Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.

Scopus (11)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Physical Properties of Cu Doped ZnO Nanocrystiline Thin Films

Thin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals.  Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.

Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Characterization of Zinc oxide Nanostructures prepared by hydrothermal method with Antibacterial property

        In this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Feb 26 2022
Journal Name
Iraqi Journal Of Science
Preparation and Characterization of ZnO Nano-Sheets Prepared by Different Depositing Methods

    Hydrothermal technology has many advantages compared to other growth methods such as the availability of their simple equipment,catalyst-free growth,Environmental friendliness, less dangerous environmental, and low costs. Combine spinning method technology with Hydrothermal could improve the structural of ZnO NS by increasing the formation of ZnO NS due to influence of heat annealed treatments on the structure of ZnO NS.   ZnONano-Sheets (NS)were prepared to employ hydrothermal process utilizing zinc acetate, that  has the chemical composition (Zn (CH3CO2)2.2H2O),as a precursor. After preparing the material, it is deposited in two methods, the first being disti

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Iraqi Journal Of Applied Physics
Scopus (10)
Scopus
Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Synthesis and Characterization of Schiff Base Derived From Chitosan and Its Complexes With (Co+2, Ni+2 and Cu+2)

     In this research, new Schiff base is derived from chitosan O-nitrobenzyldehyde and its complexes were synthesized. All compounds were characterized by FT-IR, UV-Visible, TGA, DTA, TG and molar conductivity with melting point. The results showed that Schiff base was coordinated via  nitrogen atom azomethine with the center metal ions Co+2,Ni+2 and Cu+2 behaving monodentate ligand and forming complexes with molecular formula [M(L)Cl2H2O] The tetrahedral geometrical was suggested for all prepared complexes based on the characterization data for all techniques.   +2,Cu+2, Ni+2M = Co   

View Publication Preview PDF
Publication Date
Sun Apr 01 2018
Journal Name
Research Journal Of Pharmaceutical, Biological And Chemical
Synthesis and characterization of azo dyes ligands complexes with Ni (II) and Cu (II) and studies their industrial and bacterial application

1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent

... Show More
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
study Preparation and characterization ZnO nanoparticles and study of morphology at high temperature

In context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
synthesis and characterization

chloride or poluacrulic acid with different primary amines to mesuring==================================638one hundred three patinents with rheumatic symptoms were include in this study and their sera tested for

View Publication Preview PDF
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Synthesis of Pure Nano semiconductor Oxide ZnO with Different AgNO3 Concentrations

Zinc oxide nanoparticles sample is prepared by the precipitation method. This method involves using zinc nitrate and urea in aqueous solution, then (AgNO3) Solution with different concentrations is added. The obtained precipitated compound is structurally characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The average particle size of nanoparticles is around 28nm in pure, the average particle size reaches 26nm with adding AgNO3 (0.05g in100ml =0.002 M) (0.1g in100ml=0.0058M), AgNO3 (0.2g in 100ml=0.01M) was 25nm. The FTIR result shows the existence of -CO, -CO2, -OH, and -NO2- groups in sample and oxides (ZnO, Ag2O).and used an

... Show More
Scopus (4)
Scopus Crossref
View Publication Preview PDF