In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.
Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each f ∈ Hom(N,M), f ≠0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules
The main goal of this paper is to give a new generalizations for two important classes in the category of modules, namely the class of small submodules and the class of hollow modules. They are purely small submodules and purely hollow modules respectively. Various properties of these classes of modules are investigated. The relationship between purely small submodules and P-small submodules which is introduced by Hadi and Ibrahim, is studied. Moreover, another characterization of purely hollow modules is considered.
A submodule Ϝ of an R-module Ε is called small in Ε if whenever , for some submodule W of Ε , implies . In this paper , we introduce the notion of Ζ-small submodule , where a proper submodule Ϝ of an R-module Ε is said to be Ζ-small in Ε if , such that , then , where is the second singular submodule of Ε . We give some properties of Ζ-small submodules . Moreover , by using this concept , we generalize the notions of hollow modules , supplement submodules, and supplemented modules into Ζ-hollow modules, Ζ-supplement submodules, and Ζ-supplemented modules. We study these concepts and provide some of their relations .
Let be a commutative ring with 1 and be left unitary . In this papers we introduced and studied concept P-small compressible (An is said to be P-small compressible if can be embedded in every of it is nonzero P-small submodule of . Equivalently, is P-small compressible if there exists a monomorphism , , is said to be P-small retractable if , for every non-zero P-small submodule of . Equivalently, is P-small retractable if there exists a homomorphism whenever as a generalization of compressible and retractable respectively and give some of their advantages characterizations and examples.
Let be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever . In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of their adv
... Show MoreNew types of modules named Fully Small Dual Stable Modules and Principally Small Dual Stable are studied and investigated. Both concepts are generalizations of Fully Dual Stable Modules and Principally Dual Stable Modules respectively. Our new concepts coincide when the module is Small Quasi-Projective, and by considering other kind of conditions. Characterizations and relations of these concepts and the concept of Small Duo Modules are investigated, where every fully small dual stable R-module M is small duo and the same for principally small dual stable.
The main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.
Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.
An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.