The interacting boson models, and were used to perform a complete study of even –even 160-168Yb isotopes .The low –lying positive parity states, dynamic symmetries, reduced electric quadrupole transition probability , quadruple momentum , and potential energy surface for 160-168Yb were investigated. Energy level sequences and energy ratios showed the gradual transition of the properties of these nuclei from the γ-unstable features to the rotational features . Adding the pairing parameter to Hamiltonian had a very slight effect on this feature, but it raised the β band, since it represents symmetry breaking such as in γ-unstable features . This applies to the experimental decay scheme of 160-168Yb isotopes. In , proton and neutron quadruple deformation parameters and showed values equal to -1.24 and approximately 0.7, respectively, which supports the same idea in the interacting boson model . A contour plot of the potential energy surface for 160-168Yb isotopes showed that the minimum potential occurs at approximately .
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
An experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show MoreAn experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show MoreThe radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show MoreIn this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
First principle calculations are performed to theoretically predict the physical properties of hexagonal aluminium arsenide planar and buckled monolayers. The structural characteristics showed that the buckled parameter is about 0.32 A°. Cohesive energies have favourable values and it indicates the fabrication possibility. Phonon dispersion properties indicated that the planar aluminium arsenic monolayers are dynamically unstable, while the buckled is less dynamically unstable. The elastic constant parameters achieved the required characteristics of stable hexagonal monolayer structures. The study of electronic band structure prefers to indirect semiconductor band gaps, and the density of states showed strong orbital hybridizati
... Show MoreIn recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show MoreThe moisture sorption isotherms of Mefenamic acid tablets were investigated by measuring the experimental equilibrium moisture content (EMC) using the static method of saturated salt solutions at three temperatures (25, 35, and 45°C) and water activity range from 0.056 to 0.8434. The results showed that EMC increased when relative humidity increased and the sorption capacity decreased, the tablets became less hygroscopic and more stable when the temperature increased at constant water activity. The sorption curves had a sigmoid shape, type II according to Brunauer’s classification. The hysteresis effect was significant along with the whole sorption process. The results were fitted to three models: Oswin, Smith, and Guggen
... Show MoreThis paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70 µ m 2 ) having V π L = 12 V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.
... Show More