In this paper, making use of the q-R uscheweyh differential operator , and the notion of t h e J anowski f unction, we study some subclasses of holomorphic f- unction s . Moreover , we obtain so me geometric characterization like co efficient es timat es , rad ii of starlikeness ,distortion theorem , close- t o- convexity , con vexity, ext reme point s, neighborhoods, and the i nte gral mean inequalities of func tions affiliation to these c lasses
This paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering , and are real numbers between 0 and 1.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreThe aim of this study is to provide an overview of various models to study drug diffusion for a sustained period into and within the human body. Emphasized the mathematical compartment models using fractional derivative (Caputo model) approach to investigate the change in sustained drug concentration in different compartments of the human body system through the oral route or the intravenous route. Law of mass action, first-order kinetics, and Fick's perfusion principle were used to develop mathematical compartment models representing sustained drug diffusion throughout the human body. To adequately predict the sustained drug diffusion into various compartments of the human body, consider fractional derivative (Caputo model) to investiga
... Show MoreAmino glycoside derivation including, Neomycin, Streptomycin, Kanamycin and Gentamycin with special reagents, which are benzoylchloride; benzene sulfonyl chloride and phthalic anhydride were made to enhance Uv-detectability for HPLC analysis. But there are many problems facing pre column derivation and in order to solve this, the conductivity of antibiotic derivatives were used to calculate the dissociation constant and the hydrolysis rate which determined concern type reaction. In addition the characteristics those controlling the hydrolysis of antibiotic-derivatives were investigated.
A simple UV spectrophotometric differential derivatization method was performed for the simultaneous quantification of three aromatic amino acids of tryptophan, the polar tyrosine and phenylalanine TRP, TYR and PHE respectively. The avoidance of the time and reagents consuming steps of sample preparation or analyze separation from its bulk of interferences made the approach environmentally benign, sustainable and green. The linear calibration curves of differential second derivative were built at the optimum wavelength for each analyze (218.9, 236.1 and 222.5 nm) for PHE, TRP and TYR respectively. Quantification for each analyze was in the concentration range of (1.0– 45, 0.1–20.0 and 1.0– 50.0 μg/ml) at replicates of (n=3) with a re
... Show MoreIn this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.
This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results are shown through numerical examples.
Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.
Background: Lumbar spinal canal stenosis (LSCS) is a disorder that causes neurologic deficit, pain and disability. It is common in the elderly, and increasingly encountered as the population ages. Because other causes of back pain are common and difficult to prove, it is possible that mechanical backache, in conjunction with coincident neuropathy or other unrelated leg complaint, might lead to inappropriate treatment including surgery. Thus, accurate diagnosis of the clinical syndrome of spinal stenosis using paraspinal mapping technique may be of critical importance.
Objectives: Asses the utility of paraspinal mapping technique in detecting the level of lumbar radiculopathies in patients with lumbar spinal canal stenosis.
Subjects