Preferred Language
Articles
/
ijs-2498
Solving Systems of Non-Linear Volterra Integral Equations by Combined Sumudu Transform-Adomian Decomposition Method

     This paper is used for solving component Volterra nonlinear systems by means of the combined Sumudu transform with Adomian decomposition process. We equate the numerical results with the exact solutions to demonstrate the high accuracy of the solution results. The results show that the approach is very straightforward and effective.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Numerical Treatment of First Order Volterra Integro-Differential Equation Using Non-Polynomial Spline Functions

The approach given in this paper leads to numerical methods to find the approximate solution of volterra integro –diff. equ.1st kind. First, we reduce it from integro VIDEs to integral VIEs of the 2nd kind by using the reducing theory, then we use two types of Non-polynomial spline function (linear, and quadratic). Finally, programs for each method are written in MATLAB language and a comparison between these two types of Non-polynomial spline function is made depending on the least square errors and running time. Some test examples and the exact solution are also given.

View Publication Preview PDF
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

Crossref
View Publication Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Approximate Solution of Some Classes of Integral Equations Using Bernstein Polynomials of Two-Variables

The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method

     The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.

Crossref
View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type

In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Stability of Nonlinear Systems of Fractional Order Differential Equations

In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.

Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Linear and Non-Linear Optical Properties for Organic Semiconductor (CuPc) Thin Films

Thin films of CuPc of various thicknesses (150,300 and 450) nm have been deposited using pulsed laser deposition technique at room temperature. The study showed that the spectra of the optical absorption of the thin films of the CuPc  are two bands of absorption one in the visible region at about 635 nm, referred to as Q-band, and the second in ultra-violet region where B-band is located at 330 nm. CuPc thin films were found to have direct band gap with values around (1.81 and 3.14 (eV respectively. The vibrational studies were carried out using Fourier transform infrared spectroscopy (FT-IR). Finally, From open and closed aperture Z-scan data non-linear absorption coefficient and non-linear refractive index have been calculated res

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
linear equivalence determination of key-stream sequence using Z-Transform

the research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream

View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
The Analytic Solutions of Nonlinear Generalized Pantograph Differential Equations of Higher Order Via Coupled Adomian-Homotopy Technique

     In this study, an efficient novel technique is presented to obtain a more accurate analytical solution to nonlinear pantograph differential equations. This technique combines the Adomian decomposition method (ADM) with the homotopy analysis method concepts (HAM). The whole integral part of HAM is used instead of an integral part of ADM approach to get higher accurate results. The main advantage of this technique is that it  gives a large and more extended convergent region of iterative approximate solutions for long time intervals that rapidly converge to the exact solution. Another advantage is capable of providing a continuous representation of the approximate solutions, which gives  better information over whole time interv

... Show More
Scopus Crossref
View Publication Preview PDF