Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include five stages: gray scale image, noise removable, face detection, image size normalization and clipping process. The second phase is a data mining process which includes three stages: feature extraction, feature selection and classification using j48 classifier. The third phase includes two stages, estimation and evaluation. FG-NET dataset is used which is divided into three classes; first class represents (3-7), (26-30) ages and this class represents the ages from 3 to 7 years and from 26 to 30 years because this class have four attributes from any one of this images, second class represents (8-25) ages and this class represents the ages from 8 to 25 years because this class have five attributes from any one of this images, last class represents (31-50) ages and have nine attributes from any one of this images. The Experimental results illustrate that the proposed system can give results with high precision and low time complexity. The practical evaluation of the proposed system gives accuracy up to 89.13 % with time taken of 0.023.
The research aims at evaluating the illustrations images and determining the availability of good image standards in the illustrations images of the content of the second intermediate stage computer's book for the academic year (2019-2020) as seen by computer teachers. The sample was randomly selected, (30) teachers who are actually teaching the subject in schools within the geographical area of the province of Baghdad (Karkh III). To achieve this goal, ten standards were identified: scientific accuracy, suitability for the level of students, image clarity, image freshness, quality of coloring, suitability of its location of the subject, Matching their content glimpsed, The subject matter is appropriate in terms of area, matching its tit
... Show MoreThe aim of the research is to examine the multiple intelligence test item selection based on Howard Gardner's MI model using the Generalized Partial Estimation Form, generalized intelligence. The researcher adopted the scale of multiple intelligences by Kardner, it consists of (102) items with eight sub-scales. The sample consisted of (550) students from Baghdad universities, Technology University, al-Mustansiriyah university, and Iraqi University for the academic year (2019/2020). It was verified assumptions theory response to a single (one-dimensional, local autonomy, the curve of individual characteristics, speed factor and application), and analysis of the data according to specimen partial appreciation of the generalized, and limits
... Show MoreBackground: The posterior slope of the articular eminence of completely edentulous patients compared to patients with maintained occlusion shows significant flattening. This study aimed to correlate between the flattening of the posterior slope of the articular eminence, with dental status, age, genders, on both sides using computed tomography. Materials and Methods: The sample of the present study was a total of 117 Iraqi subjects, who admitted to the maxillofacial department at Al-Sadr Teaching Hospital in Al-Najaf city. The examination was performed on CT scanner; the eminence inclination was measured in two methods using sagittal section. Results: Clinically, the inclination of articular eminence was higher in edentulous subjects than i
... Show MoreThis research concentrate on cultivated Iraqi Agave attenuata dried leaves and roots, because of little studies on this plant especially on the root that lead to the eager of study and comparison of phytochemical constituents between leaves and root. Extraction of bioactive constituents was carried out using several solvents with increasing polarity (n-hexane, ethyl acetate and methanol) by soxhlet apparatus. Steroidal saponins in Agave genus is well documented in many species, lightening the minds in this research on extraction method which is specific for steroidal saponins. Phytochemical screening was done by GC/MS for n-hexane fraction, qualitative and quantitative estimation of several bioactive constituents (caffe
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreObjective: To assess the Impact of Socio-economic status on age at menarche among secondary school students at
AL-Dora city in Baghdad, Iraq.
Methodology: This is a cross sectional study with multi-stage sampling was carried out during the period from the
3
th of December2013 to 12th of March 2014. The Sample comprised of 1760 girls, 1510 girls from urban area and
250 from rural area was included in the study. In first stage, selection of schools was done, and one class was
selected randomly from each level of Education, The data collection through a special questionnaire which Contain
the age of girl by year, class level, birth order, number of household, number of rooms, residency (urban/rural),
education level
The main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg
... Show MoreProject management are still depending on manual exchange of information based on paper documents. Where design drawings drafting by computer-aided design (CAD), but the data needed by project management software can not be extracted directly from CAD, and must be manually entered by the user. The process of calculation and collection of information from drawings and enter in the project management software needs effort and time with the possibility of errors in the transfer and enter of information. This research presents an integrated computer system for building projects where the extraction and import quantities, through the interpretation of AutoCAD drawing with MS Access database of unit costs and productivities for the pricing and
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show More