Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include five stages: gray scale image, noise removable, face detection, image size normalization and clipping process. The second phase is a data mining process which includes three stages: feature extraction, feature selection and classification using j48 classifier. The third phase includes two stages, estimation and evaluation. FG-NET dataset is used which is divided into three classes; first class represents (3-7), (26-30) ages and this class represents the ages from 3 to 7 years and from 26 to 30 years because this class have four attributes from any one of this images, second class represents (8-25) ages and this class represents the ages from 8 to 25 years because this class have five attributes from any one of this images, last class represents (31-50) ages and have nine attributes from any one of this images. The Experimental results illustrate that the proposed system can give results with high precision and low time complexity. The practical evaluation of the proposed system gives accuracy up to 89.13 % with time taken of 0.023.
Computers have been used for numerous applications involving the automatic or semiautomatic recognition of patterns in image. Advanced manufacturing system requires automated inspection and test method to increase production and yield best quality of product. Methods are available today is machine vision. Machine vision systems are widely used today in the manufacturing industry for inspection and sorting application. The objective of this paper is to apply machine vision technology for measuring geometric dimension of an automotive part. Vision system usually requires reprogramming or parameterization of software when it has to be configured for a part or product. A web camera used to capture an image of an automotive part that has been ch
... Show MoreBoltzmann mach ine neural network bas been used to recognize the Arabic speech. Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .
The spectral feature size is reduced by series of operations in
order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.
The neural network recognized Arabic. After Boltzmann Machine Neura l network training the system with
... Show MoreBackground: Breast cancer is the most common
malignancy affecting females worldwide. The association
of Epstein-Barr virus (EBV) with this cancer is a longstanding
interest to this field.
Aim: to investigate the presence of EBV in breast tumor
tissue in relation to age.
Patients and Methods: Paraffin-embedded tissue blocks
from 45 female patients with breast tumors (ranged in age
from 28 to 85 years) were retrieved. The cases were
grouped into two categories: group (A): included 30 cases
with breast carcinoma and group (B): included 15 cases
with benign breast diseases as a control group .The
expression of EBV protein was examined
immunohistochemically.
Results: Twelve (40%) of the 30 breast canc
Shear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined. There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements. The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more accurate t
... Show MoreIn this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined.
There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements.
The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more a
In this paper, suggested method as well as the conventional methods (probability
plot-(p.p.) for estimations of the two-parameters (shape and scale) of the Weibull
distribution had proposed and the estimators had been implemented for different
sample sizes small, medium, and large of size 20, 50, and 100 respectively by
simulation technique. The comparisons were carried out between different methods
and sample sizes. It was observed from the results that suggested method which
were performed for the first time (as far as we know), by using MSE indicator, the
comparisons between the studied and suggested methods can be summarized
through extremely asymptotic for indicator (MSE) results by generating random
error