Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include five stages: gray scale image, noise removable, face detection, image size normalization and clipping process. The second phase is a data mining process which includes three stages: feature extraction, feature selection and classification using j48 classifier. The third phase includes two stages, estimation and evaluation. FG-NET dataset is used which is divided into three classes; first class represents (3-7), (26-30) ages and this class represents the ages from 3 to 7 years and from 26 to 30 years because this class have four attributes from any one of this images, second class represents (8-25) ages and this class represents the ages from 8 to 25 years because this class have five attributes from any one of this images, last class represents (31-50) ages and have nine attributes from any one of this images. The Experimental results illustrate that the proposed system can give results with high precision and low time complexity. The practical evaluation of the proposed system gives accuracy up to 89.13 % with time taken of 0.023.
This paper include the problem of segmenting an image into regions represent (objects), segment this object by define boundary between two regions using a connected component labeling. Then develop an efficient segmentation algorithm based on this method, to apply the algorithm to image segmentation using different kinds of images, this algorithm consist four steps at the first step convert the image gray level the are applied on the image, these images then in the second step convert to binary image, edge detection using Canny edge detection in third Are applie the final step is images. Best segmentation rates are (90%) obtained when using the developed algorithm compared with (77%) which are obtained using (ccl) before enhancement.
The Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
Aim: The purpose of this study was to analyze the patterns of facial fractures in children and to compare them between preschool- and school-aged children. Materials and methods: This retrospective observational study included 57 children with facial fractures. The variables analyzed were the age of the patients—divided into a preschool-aged group (0–5 years) and a school-aged group (6–12 years)—gender, cause of trauma, the facial bones involved, the pattern of fracture, the modality of treatment used, the time between injury and treatment, and the postoperative complications. Results: The incidence of facial fractures in children ≤12 years was 30.2%. The patients consisted of 40 (70.2%) males and 17 (29.8%) females, and most pati
... Show MoreOnline examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical meth
... Show MoreThe increase in cloud computing services and the large-scale construction of data centers led to excessive power consumption. Datacenters contain a large number of servers where the major power consumption takes place. An efficient virtual machine placement algorithm is substantial to attain energy consumption minimization and improve resource utilization through reducing the number of operating servers. In this paper, an enhanced discrete particle swarm optimization (EDPSO) is proposed. The enhancement of the discrete PSO algorithm is achieved through modifying the velocity update equation to bound the resultant particles and ensuring feasibility. Furthermore, EDPSO is assisted by two heuristic algorithms random first fit (RFF) a
... Show MoreThe technology of change detection is a technique by which changes are verified in a certain time period. Remote sensing images are used to detect changes in agriculture land for the selected study area located south of Baghdad governorate in Agricultural Division of AL-Rasheed district because this method is very effective for assessing change compared to other traditional scanning techniques. In this research two remotely sensed images for the study area were taken by Landsat 8 and Sentinel-2, the difference between them is one month to monitor the change in the winter crops, especially the wheat crop, where the agriculture began for the wheat crop there in the Agricultural Division of AL-Rasheed district at 15
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po