Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include five stages: gray scale image, noise removable, face detection, image size normalization and clipping process. The second phase is a data mining process which includes three stages: feature extraction, feature selection and classification using j48 classifier. The third phase includes two stages, estimation and evaluation. FG-NET dataset is used which is divided into three classes; first class represents (3-7), (26-30) ages and this class represents the ages from 3 to 7 years and from 26 to 30 years because this class have four attributes from any one of this images, second class represents (8-25) ages and this class represents the ages from 8 to 25 years because this class have five attributes from any one of this images, last class represents (31-50) ages and have nine attributes from any one of this images. The Experimental results illustrate that the proposed system can give results with high precision and low time complexity. The practical evaluation of the proposed system gives accuracy up to 89.13 % with time taken of 0.023.
ABSTRACT Background: Dental caries is a most common social and intractable infectious disease in human. Saliva is critical for preserving and maintaining oral health and salivary elements had many effects on caries experience. Aim of study: This study was conducted to assess dental caries severity by age and gender and their relation to salivary zinc and copper among a group of adults aged (19-22) years. Materials and methods: After examination eighty persons aged 19-22 years of both gender. Caries severity was documented according to DMFS index. Stimulated salivary samples were collected and chemically analyzed under standardized condition to detect salivary elements zinc and copper. Concentrations of Zinc and copper were measured by using
... Show MoreAbstract
Objectives: The study aims to: (1) Find out the relationship among participants’ age, body mass index (BMI), and Health Belief Model (HBM) related to colorectal examinations among graduate students. (2) Investigate the differences in Health Belief Model constructs between the groups of age, gender, marital status, and education level among graduate students.
Methodology: A descriptive correlational study design which conducted in the College of Fine Arts – University of Baghdad. A convenience sample of 80 graduate students were included in this study. The data were collected by using a self-reported questionnaire which consisted of two parts (I) socio-demographic characteristics (II) Colorectal Cancer Screening Beliefs
Background: habit is any purposeless action repeated unconsciously. It is a sign of lack of harmony between the subject and the surrounding environment. Deleterious oral habits such as finger sucking could be one of the etiological factors for altered oro-facial growth development. This study conducted to explore the association between finger sucking habit and malocclusion in deciduous dentition. Materials and method: Totally 40 chronic thumb sucker and 40 controls matching in age and gender were enrolled in the study. A study conducted by verifying different occlusal trait through the intra-oral examination. Thumb sucking habit diagnosed using data gathered from parents. Results: The statistical analysis showed a highly significant dif
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreIn this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as the fuzzy reliability at the estimation of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that
... Show MoreIn this work, watershed transform method was implemented to detect and extract tumors and abnormalities in MRI brain skull stripped images. An adaptive technique has been proposed to improve the performance of this method.Watershed transform algorithm based on clustering techniques: K-Means and FCM were implemented to reduce the oversegmentation problem. The K-Means and FCM clustered images were utilized as input images to the watershed algorithm as well as of the original image. The relative surface area of the extracted tumor region was calculated for each application. The results showed that watershed trnsform algorithm succeedeed to detect and extract the brain tumor regions very well according to the consult of a specialist doctor a
... Show MoreStudying the spatially distribution pattern of fuel station in province of Baghdad
was done by utilizing GIS techniques which they are the most powerful tools for
design, display and analysis for the spatial data. Nearest Neighbor Analysis method
was applied for analyzing the spatial distributions of the fuel stations. Baghdad was
considered to be divided in to two main parts (outskirts of Baghdad and center of
Baghdad). The nearest neighbour for all parts of Baghdad indicates for the
distribution pattern is random and differs from place to another in randomly rate.