Preferred Language
Articles
/
ijs-247
Intelligent Age Estimation From Facial Images Using Machine Learning Techniques
...Show More Authors

     Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include five stages: gray scale image, noise removable, face detection, image size normalization and clipping process. The second phase is a data mining process which includes three stages: feature extraction, feature selection and classification using j48 classifier. The third phase includes two stages, estimation and evaluation. FG-NET dataset is used which is divided into three classes; first class represents (3-7), (26-30) ages and this class represents the ages from 3 to 7 years and from 26 to 30 years because this class have four attributes from any one of this images, second class represents (8-25) ages and this class represents the ages from 8 to 25 years because this class have five attributes from any one of this images, last class represents (31-50) ages and have nine attributes from any one of this images. The Experimental results illustrate that the proposed system can give results with high precision and low time complexity. The practical evaluation of the proposed system gives accuracy up to 89.13 % with time taken of 0.023.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
The Digital Change Detection for Low Resolution Satellite Images in Weathering Estimation
...Show More Authors

      The detection and estimation of weathering conditions have become a very important daily necessity in our life. For this purpose, several satellites of low resolution imagery were launched by the weathering and environmental agencies. The important weather paremeters are temperuter, wind direction,  velocity, clould and humidity, etc. The low resolution images often deal with large-scale phenomena and the interpretation and projection of the produced data requires continuous development of tools and criteria.              In this paper, the low spatial resolution data generated by the moderate resolution imaging spectroradiometer (MODIS) were used to monitor the cloud density and direction above Iraq and i

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
A Semi-Supervised Machine Learning Approach Using K-Means Algorithm to Prevent Burst Header Packet Flooding Attack in Optical Burst Switching Network
...Show More Authors

Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
New algorithms to Enhanced Fused Images from Auto-Focus Images
...Show More Authors

Enhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 06 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Calculating Techniques for The Contrast of Images Which Have Different Illuminations
...Show More Authors

      The distortion, which occurs to the image often affects the existing amount of information, weakens its sharpness, decreases its contrast, thus leads to overlapping details of the various regions, and decreases image resolution. Test images are used to determine the image quality and ability of different visual systems, as we depended in our study on test image, half black and half white. Contrast was studied in the petition so as to propose several new methods for different contrasts in the edge of images where the results of technical differences would identify contrast image under different lighting conditions.

View Publication Preview PDF
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Comparison between Different Data Image Compression Techniques Applied on SAR Images
...Show More Authors

In this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.

View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (13)
Crossref (9)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Design and implementation of a Deep Learning-based Intelligent Electronic Lock Door Entry Control System
...Show More Authors

    The Internet of Things (IoT) technology and smart systems are playing a major role in the advanced developments in the world that take place nowadays, especially in multiple privilege systems. There are many smart systems used in daily human life to serve them and facilitate their tasks, such as alarm systems that work to prevent unwanted events or face detection and recognition systems. The main idea of this work is to capture live video using a connected Pi camera, save it, and unlock the electric strike door in several ways; either automatically by displaying a live video connected via USB webcam using a deep learning algorithm of facial recognition and OpenCV or by RFID technology, as well as by detecting abnormal entrance wit

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref