The diseases presence in various species of fruits are the crucial parameter of economic composition and degradation of the cultivation industry around the world. The proposed pear fruit disease identification neural network (PFDINN) frame-work to identify three types of pear diseases was presented in this work. The major phases of the presented frame-work were as the following: (1) the infected area in the pear fruit was detected by using the algorithm of K-means clustering. (2) hybrid statistical features were computed over the segmented pear image and combined to form one descriptor. (3) Feed forward neural network (FFNN), which depends on three learning algorithms of back propagation (BP) training, namely Scaled conjugate gradient (SCG-BP), Resilient (R-BP) and Bayesian regularization (BR-BP), was used in the identification process. Pear fruit was taken as the experiment case during this work with three classifications of diseases, namely fire blight, pear scab, and sooty blotch, as compared to healthy pears. PFDINN framework was trained and tested using 2D pear fruit images collected from the Fruit Crops Diseases Database (FCDD). The presented framework achieved 94.6%, 97.3%, and 96.3% efficiency for SCG-BP, R-BP, and BR-BP, respectively. An accuracy value of 100% was achieved when the R-BP learning algorithm was trained for identification.
Depletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreA high-performance liquid chromatography method was employed for the quantitative determination of ascorbic acid (AA) which called vitamin C in three types of Iraqi citrus (orange mandarin and aurantium ) and to establish this goal , evaluation of ascorbic acid degradation is so important due to its significant criticality when exposure to ordinary atmospheric conditions. The chromatographic analysis of AA was carried out after their sequential elution with KH2PO4 ( as mobile phase) by reverse-phase HPLC technique with C8 column and UV detection at 214 nm. .Bad resolutions was appeared clearly for C8 column , so another alternative condition were carried out to improve the resolution by replacement of C8 by C18 column .Statistical treat
... Show MoreFeature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe
... Show MoreIn the recent years, remote sensing applications have a great interest because it's offers many advantages, benefits and possibilities for the applications that using this concept, satellite it's one must important applications for remote sensing, it's provide us with multispectral images allow as study many problems like changing in ecological cover or biodiversity for earth surfers, and illustrated biological diversity of the studied areas by the presentation of the different areas of the scene taken depending on the length of the characteristic wave, Thresholding it's a common used operation for image segmentation, it's seek to extract a monochrome image from gray image by segment this image to two region (for
... Show MoreHeart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine lea
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show More