Chlorination has been the method of choice for disinfecting water used for drinking purposes. However, some stressed bacteria during chlorination are able to recover and alter the potability of water. This study assessed the recovery of stressed bacteria in dechlorinated water. Ten chlorinated water samples were collected from different points within Ilorin metropolis, Kwara, Nigeria. The samples (100ml) were dechlorinated with 0.1ml of 11.4mM sodium thiosulphate solution. The physicochemical characteristics of the chlorinated water samples were determined while bacteriological analyses were carried out on both chlorinated and dechlorinated water samples. The antibiotic susceptibility pattern of the isolates was determined using disc diffusion method. The physicochemical characteristics of the water samples ranged as follow: pH 7.3-8.4, chloride content 4.37-6.85 mg/l, suspended solids 0.004-0.017 g/100ml, and total hardness 30-72mg/l. The chlorinated water samples had bacterial, total, and faecal coliform counts ranging from 1.0 × 101 – 1.9 × 104cfu/ml, 0 – 480 MPN/100ml, and zero, respectively. The dechlorinated water sample had corresponding counts of 5.4 × 102 – 7.36 × 104cfu/ml, 6 - 1100 MPN/100ml, and 0 – 380 MPN/100ml. A total of eleven bacterial species belonging to the genera Bacillus, Burkholderia, Citrobacter, Enterobacter, Enterococcus, Escherichia, Staphylococcus, Serratia, and Streptococcus were isolated. Not lower than 60% of the bacterial isolates were susceptible to ofloxacin and ciprofloxacin. All the isolates exhibited multiple antibiotic resistances. The antibiotic resistance pattern of an isolate of Citrobacter freundii to cefuroxime, cefixime, and gentamycin changed remarkably and was plasmid-mediated, while that of E. coli and Enterobacter agglomerans remained unchanged to all the antibiotics and was non-plasmid mediated. Chlorination of water at the point of use is recommended. It is concluded that chlorination is essential in order to prevent reactivation of stressed bacteria during distribution and prevent infection by bacteria with high multiple antibiotic resistance index.
The present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreReinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
Concrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show MoreSARS-CoV-2 stands for severe acute respiratory syndrome coronavirus 2 which is the causative agent of spreading coronavirus disease 2019 that is known as COVID-19 pandemic, the disease leads to severe acute respiratory illness. Matrix metalloproteinases- 9 (MMP-9) plays several important physiological functions. This enzyme could also be implicated in the "cytokine storm" in some way, which may represent one of the possible scianrios during coronavirus infection, in addition to its role in the mechanism of lung fibrosis on molecular basis.. The tissue inhibitors of metalloproteinase (TIMPs) are well characterized for controlling the activity of MMPs in extracellular matrix remodeling. They also considered as signaling molecules anal
... Show MoreMoringa oleifera Lam. tree has often been considered a medicinal and economical plant for its nutritional and medicinal properties. This study is intended to use plant tissue culture and elicitation technologies to increase secondary metabolites in the callus cultures of the M. oleifera. Young nodal segments were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of plant growth regulators (PGRs). A combination of 1.5 mg/l NAA plus 0.5 mg/l TDZ resulted in a high callusing rate (70%) with the largest size. Various concentrations of Salicylic acid (SA) and Methyl jasmonate (MeJa) were individually added to the growth medium to evaluate their impact on the biomass of callus cul
... Show MoreThe behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
Background: Mitral regurgitation (MR) is the most commonly encountered valve lesion in modern clinical practice. Severe mitral regurgitation may cause systolic dysfunction. Left ventricular ejection fraction may not be an accurate measurement of LV function in patients with mitral insufficiency. Myocardial performance index (MPI) is a simple non invasive measure of myocardial function. Methods: The study involved 50 patients with valvular mitral regurgitation and 50 healthy subjects as a control group. Transthoracic echocardiography was carried out for all patients and control group. The echocardiographic measurements included left ventricular end diastolic and end systolic dimensions, left atrial diameter, ejection fraction (EF), and myoca
... Show MoreThe physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤