PVC-LiF composites films with different lithium fluoride (LiF) concentrations (0, 30, 50, and 70 weight %) were prepared by using the casting method. This research deals with the investigation of dielectric properties for PVC-LiF composite films as a function of frequency and temperature in the ranges of 100 to 107 Hz and 293 - 370 K, respectively. The A.C activation energy values estimated from Arrhenius equation were 0.03820, 0.3174, 0.2009, and 0.1845 eV for the different PVC-LiF films with different LiF concentrations, respectively. It was found that the activation energy decreases by increasing LiF concentration and frequency. The exponent (s) showed a progressive increase with LiF for PVC-LiF films, while it showed a non-systematic sequence with the increase of temperature. The dependence of the dielectric constant (εr) and dielectric loss (εi) on temperature and frequency was investigated for PVC-LiF films with the different LiF concentrations. The dielectric spectrum showed a strong dispersion when LiF was added to the polymer matrix (PVC) in the whole range of frequency and temperature. The results were interpreted in terms of structural differences caused by the effect of thermal treatment.
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria