Preferred Language
Articles
/
ijs-2318
Color Image Compression System by using Block Categorization Based on Spatial Details and DCT Followed by Improved Entropy Encoder
...Show More Authors

In this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be quantized with different quantization values according to the energy of the block. Finally, an enhanced entropy encoder technique is applied to store the quantized coefficients. To test the level of compression, the quantitative measures of the peak signal-to-noise ratio (PSNR) and compression ratio (CR) is used to ensure the effectiveness of the suggested system. The PSNR values of the reconstructed images are taken between the intermediate range from 28dB to 40dB, the best attained compression gain on standard Lena image has been increased to be around (96.60 %). Also, the results were compared to those of the standard JPEG system utilized in the “ACDSee Ultimate 2020” software to evaluate the performance of the proposed system.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improving Detection Rate of the Network Intrusion Detection System Based on Wrapper Feature Selection Approach
...Show More Authors

Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 25 2017
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
A Novel DNA Sequence Approach for Network Intrusion Detection System Based on Cryptography Encoding Method
...Show More Authors

A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Verification of Phase Space Inversions Based on The Initial Conditions of the Chaotic Chen System
...Show More Authors

     Theoretically, an eight-term chaos system is presented. The effect of changing the initial conditions values on behavior Chen system was studied. The basic dynamical properties of system are analyzed like time series, attractor, FFT spectrum, and bifurcation. Where the system appears steady state behavior at initial condition xi , yi , zi equal (0, 0, 0) respectively and it convert to quasi-chaotic at xi ,yi ,zi  equal (-0.1, 0.5,-0.6). Finally, the system become hyper chaotic at xi ,yi ,zi equal(-0.5, 0.5,-0.6 ) that can used it in many applications like secure communication.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
The Limitation of Pre-processing Techniques to Enhance the Face Recognition System Based on LBP
...Show More Authors

Most systems are intelligent and the industrial world is moving now towards
technology. Most industrial systems are now computerized and offer a high speed.
However, Face recognition is a biometric system that can identify people from their
faces. For few number of people to be identified, it can be considered as a fast
system. When the number of people grew to be bigger, the system cannot be adopted
in a real-time application because its speed will degrade along with its accuracy.
However, the accuracy can be enhanced using pre-processing techniques but the
time delay is still a challenge. A series of experiments had been done on AT&TORL
database images using Enhanced Face Recognition System (EFRS) that is

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Construct an efficient distributed denial of service attack detection system based on data mining techniques
...Show More Authors

<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
...Show More Authors
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Nov 01 2019
Journal Name
International Journal On Interactive Design And Manufacturing (ijidem)
A real-time automated sorting of robotic vision system based on the interactive design approach
...Show More Authors

View Publication
Scopus (32)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Al–bahith Al–a'alami
Satirical Television Programs and Their Impact on the Image of Iraqi Politicians
...Show More Authors

This research delves into the role of satirical television programs in shaping the image of Iraqi politicians. The research problem is summarized in the main question: How does satire featured in television programs influence the portrayal of Iraqi politicians? This research adopts a descriptive approach and employs a survey methodology. The primary data collection tool is a questionnaire, complemented by observation and measurement techniques. The study draws upon the framework of cultural cultivation theory as a guiding theoretical foundation. A total of 430 questionnaires were disseminated among respondents who regularly watch satirical programs, selected through a multi-stage random sampling procedure.
Th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref