In this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be quantized with different quantization values according to the energy of the block. Finally, an enhanced entropy encoder technique is applied to store the quantized coefficients. To test the level of compression, the quantitative measures of the peak signal-to-noise ratio (PSNR) and compression ratio (CR) is used to ensure the effectiveness of the suggested system. The PSNR values of the reconstructed images are taken between the intermediate range from 28dB to 40dB, the best attained compression gain on standard Lena image has been increased to be around (96.60 %). Also, the results were compared to those of the standard JPEG system utilized in the “ACDSee Ultimate 2020†software to evaluate the performance of the proposed system.
In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if is character on Z then ker is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, st(Z) is -fuzzy closed subset of fb(Z, ) when (Z, , , ) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.