In this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be quantized with different quantization values according to the energy of the block. Finally, an enhanced entropy encoder technique is applied to store the quantized coefficients. To test the level of compression, the quantitative measures of the peak signal-to-noise ratio (PSNR) and compression ratio (CR) is used to ensure the effectiveness of the suggested system. The PSNR values of the reconstructed images are taken between the intermediate range from 28dB to 40dB, the best attained compression gain on standard Lena image has been increased to be around (96.60 %). Also, the results were compared to those of the standard JPEG system utilized in the “ACDSee Ultimate 2020†software to evaluate the performance of the proposed system.
Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we pr
... Show MoreAn Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreFeatures are the description of the image contents which could be corner, blob or edge. Scale-Invariant Feature Transform (SIFT) extraction and description patent algorithm used widely in computer vision, it is fragmented to four main stages. This paper introduces image feature extraction using SIFT and chooses the most descriptive features among them by blurring image using Gaussian function and implementing Otsu segmentation algorithm on image, then applying Scale-Invariant Feature Transform feature extraction algorithm on segmented portions. On the other hand the SIFT feature extraction algorithm preceded by gray image normalization and binary thresholding as another preprocessing step. SIFT is a strong algorithm and gives more accura
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreIncreased diseases and obesity currently due to increased production and excessive consumption of foods manufactured from non-food sweeteners without attention to the risk of consuming those additional high calories due to consuming these refreshing products such as juices and other various drinks, especially in the summer season by most segments of Iraqi society, especially workers, children and school students the aim of this study. Therefore, the study designed to replace sucrose with 0.03, 0.04 and 0.05% of each of the white stevia crystals and milled dry stevia leaves in the laboratory manufacture of juices and its effect on the general and sensory characteristics and the extent of their acceptability among the specialized r
... Show MoreIn this research paper, two techniques were used to treat the drill cuttings resulting from the oil-based drilling fluid. The drill cuttings were taken from the southern Rumaila fields which prepared for testing and fixed with 100 gm per sample and contaminated with two types of crude oil, one from Rumaila oilfields with Sp.gr of 0.882 and the other from the eastern Baghdad oilfield with Sp.gr of 0.924 besides contamination levels of 10% and 15% w/w in mass. Samples were treated first with microwave with a power applied of 540 & 180 watts as well as a time of 50 minutes. It was found that the results reached below 1% w/w in mass, except for two samples they reached below 1.5% w/w in mass. Then, the sample of 1.41% w/w in mass,
... Show MoreThe variation of compression index Cc and swelling index Cs with the degree of saturation S was studied on unsaturated and fully saturated soils for different degrees of saturation (100%, 91%, 85%, 75%, 60%), several mathematical equations were found to describe these relationships, these equations can be used to predict settlement during the consolidation process in unsaturated and fully saturated soils.
Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show More