Preferred Language
Articles
/
ijs-2303
Shape Feature Extraction Techniques for Fruits: A Review
...Show More Authors

          Fruits sorting, recognizing, and classifying are essential post-harvest operations, as they contribute to the quality of food industry, thereby increasing the exported quantity of food. Today, an automated system for fruit classification and recognition is very important, especially when exporting to markets where quality of fruit must be high. In this study, the advantages and disadvantages of the various shape-based feature extraction algorithms and technologies that are used in sorting, classifying, and grading of fruits, as well as fruits quality estimation, are discussed in order to provide a good understanding of the use of shape-based feature extraction techniques.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Satellite image classification using proposed singular value decomposition method
...Show More Authors

In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Obese Women and Choosing Ready-made Clothes: Difficulties and Choices
...Show More Authors

Thisstudy aims to determine the specifications of obese women accordingto the heightand type of obesity. It also aimstoidentify the significance of differences in choosing ready-made clothes for the research sample. Finally, the significance of differences in choosing ready-made clothes according to the variable of binaryclassification ofobesity is also identified.The study sample includes obese women: employees, non-employees and students with the age group (18-50) years.The weights and lengths of the sample have been taken to suit the group of obese women.Aquestionnaire in the form of an open question was distributed among (50) obese womenso as to extract the items of the questionnaire. After that, the questionnaire was distributed amo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Assessment of vegetable cover in south Iraq by remote sensing methods
...Show More Authors

The vegetable cover plays an important role in the environment and Earth resource sciences. In south Iraq, the region is classified as arid or semiarid area due to the low precipitations and high temperature among the year. In this paper, the Landat-8 satellite imagery will be used to study and estimate the vegetable area in south Iraq. For this purpose many vegetation indices will be examined to estimate and extract the area of vegetation contain in and image. Also, the weathering parameters must be investigated to find the relationship between these parameters and the arability of vegetation cover crowing in the specific area. The remote sensing packages and Matlab written subroutines may be use to evaluate the results.

Preview PDF
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Classification of Cardiac Arrhythmia using ID3 Classifier Based on Wavelet Transform
...Show More Authors

Accurate detection of Electro Cardio Graphic (ECG) features is an important demand for medical purposes, therefore an accurate algorithm is required to detect these features. This paper proposes an approach to classify the cardiac arrhythmia from a normal ECG signal based on wavelet decomposition and ID3 classification algorithm. First, ECG signals are denoised using the Discrete Wavelet Transform (DWT) and the second step is extract the ECG features from the processed signal. Interactive Dichotomizer 3 (ID3) algorithm is applied to classify the different arrhythmias including normal case. Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database is used to evaluate the ID3 algorithm. The experimental resul

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applications of Discriminant Analysis in Medical diagnosis
...Show More Authors

In this paper, the discriminant analysis is used to classify the most wide spread heart diseases known as coronary heart diseases into two groups (patient, not patient) based on the changes of discrimination features of ten predictor variables that we believe they cause the disease . A random sample for each group is employed and the stepwise procedures are performed in order to delete those variables that are not important for separating the groups. Tests of significance of discriminant analysis and estimating the misclassification rates are performed

View Publication Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use of Logistic Regression Model in Estimating the Probability of Being Affected By Breast Cancer Based On the Levels of Interleukins and Cancer Marker CA15-3
...Show More Authors

Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Satellite Images Classification in Rural Areas Based on Fractal Dimension
...Show More Authors

Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (1)
Scopus Crossref