Fruits sorting, recognizing, and classifying are essential post-harvest operations, as they contribute to the quality of food industry, thereby increasing the exported quantity of food. Today, an automated system for fruit classification and recognition is very important, especially when exporting to markets where quality of fruit must be high. In this study, the advantages and disadvantages of the various shape-based feature extraction algorithms and technologies that are used in sorting, classifying, and grading of fruits, as well as fruits quality estimation, are discussed in order to provide a good understanding of the use of shape-based feature extraction techniques.
The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreA proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.
A statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
Fluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically
... Show MoreThe study included the extraction of volatile oil from Mentha piperita which was 1.3 % in the leaves and flowers . Volatile oil of the Mentha piperita leaves had special aromatic odour, pale yellow color, slightly pungent taste . The specific gravity and refractive index were (0.9794) and ( 1.464) respectively. The inhibition activity of the Mentha piperita Volatile oil extracts were studied on some pathogenic microorganisms like Staphylococcus aureus, Salmonella typhi, Escherichia coli, Proteus sp, and Klebsiella pneumoniae . The result showed that the volatile oil had an inhibition effect on the growth of all microorganisms, and it gave the higher inhibition effect on the growth of S. aureus in which the inhibition zone reached to 2
... Show MoreBackground: Thyroid cancer (TC) is an increasingly prevalent malignancy throughout the world. It has long been recognized that the incidence of TC is higher in women which increases with age. However, the association of gender disparity and age with TC aggressiveness and outcomes are still controversial. The aim of this study was focused on the association of age and gender with histopathological characteristics in TC. Methods: 153 patients who met the criteria, were selected. The included cases were divided into four age groups (≤24 years, 25-44 years, 45-64 years, and ≥65 years). Demographic, age and pathological parameters were compared among them. The association of gender and age with
... Show MoreThe dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show MoreIn addition to their high quantities of active chemicals, medicinal plants are well-known for their pharmacological qualities, which include immunological modulation. T Consequently, this study aimed to examine the effects of Avena sativa and Glycyrrhiza glabra leaf extracts on immunological responses as measured by blood cytokine and liver enzyme levels. The phytochemical analysis of Avena sativa crude leaf extracts revealed the presence of alkaloids,flavonoids, tannins, phenolic compounds, and saponins but the absence of resins and violet oils. On the other hand, violet oils, flavonoids, tannins, saponins, and glycosides were detected in significant concentration in Glycyrrhiza glabra ethanolic extract, although resins and phenolic compou
... Show More