This study includes structural and stratigraphic interpretation of 3D seismic reflection data for Zubair Formation (L. Cretaceous) within Al-Akhadeir area, southwestern Iraq (Karbala Governorate). Depending on the 3D seismic reflection interpretation process, and based on the synthetic seismogram and well logs data, two horizons were identified and selected (top and base Zubair reflectors). These horizons were followed up over the entire area in order to obtain structural and stratigraphic settings. TWT, depth, and velocity maps for the base and top Zubair Formation were constructed. From the interpretation of these maps and based on the seismic section, the study concluded that there are some enclosures that represent anticline in the NW of the horizon and syncline in the NE, while the nose structure appears in the middle of the horizon and trends N-S. The horizon represents a progradational with sigmoid configuration.. Other seismic structural phenomena were recognized in this part of the area, such as flat spot, down lap, and top lap, which give indicators of potential hydrocarbon accumulations
Before setting a turbine in a wind farms allocated for power generation, it must be know the appropriate turbine class for that site depending on the turbulence intensity of the winds in the studied area and the IEC-61400 standard. The importance of identifying a class of wind turbine is due to the complex environmental conditions that produce turbulent air which, in turn, may cause damage to the turbine blades and weakness in the performance. Therefore, the ambient turbulence intensity is a very important factor in determining the performance and productivity of the wind turbines.
In this research we calculate Turbulence Intensity "TI" in the province of Nasiriyah, south of Iraq (Lat. 31.052049 , Lon. 46.261021) for the years 2008, 2
The degree of contamination in the sediments of the Euphrates River (Shatt Al-
Hindiya), for the metals As, Cd, Co, Cu, Cr, Mn, Ni, Pb, Sc Se, Sr, V and Zn has
been evaluated using the index of geo-accumulation (I-geo), Enrichment factor (EF),
Contamination factor (CF) and pollution load index (PLI), whereat the I-geo has
been widely utilized as a measure of pollution in freshwater sediment. Enrichment
factor (EF) is one widely used as approach to characterize the degree of
anthropogenic pollution to establish enrichment ratios, while the pollution load
index (PLI) represents the number of times by which the heavy metal concentrations
in the sediment exceeds the background concentration, and gives a summative
i
This study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in the study were
... Show MoreIn this research, the geotechnical properties of soil for modern residential complexes in the city of Tikrit-Iraq were determined using six samples represented by three residential complexes (Bety, Yarmouk and Jawhara) and that these complexes built on gypsum soils suffer in the future from several engineering problems that appear in the form of cracks, inclination or subsidence in The buildings or the collapse of the facilities, the dilution of the roads and the breaking of the water and sewage networks due to the melting of the gypsum in the soil. One of the most important objectives for the research is that the residential complexes for the research area in Tikrit are not older than some years. With the urban expansion that a
... Show MoreExploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som
A numerical evaluation of the crucial physical properties of a 3D unsteady MHD flow along a stretching sheet for a Casson fluid in the presence of radiation and viscous dissipation has been carried out. Meanwhile, by applying similarity transformations, the nonlinear partial differential equations (PDEs) are transformed into a system of ordinary differential equations (ODEs). Furthermore, in the numerical solution of nonlinear ODEs, the shooting method along with Adams Moulton method of order four has been used. The obtained numerical results are computed with the help of FORTRAN. The tables and graphs describe the numerical results for different physical parameters which affect the velocity and temperature profiles.
To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreThis paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show More