High frequency (HF) radio wave propagation depends on the ionosphere status which is changed with the time of day, season, and solar activity conditions. In this research, ionosonde observations were used to calculate the values of maximum usable frequency (MUF) the ionospheric F2- layer during strong geomagnetic storms (Dst ≤ -100 nT) which were compared with the predicted MUF for the same layer by using IRI-16 model. Data from years 2015 and 2017, during which five strong geomagnetic storms occurred, were selected from two Japanese ionosonde stations (Kokubunji and Wakkanai) located at the mid-latitude region. The results of the present work do not show a good correlation between the observed and predicted MUF values for F2- layer during the selected events of strong geomagnetic storms at these stations. Thus, there is a further need to improve the IRI-16 model for better matching with the observations during strong geomagnetic storms.
In this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show MoreIn this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MoreIn this paper, the aquatic food chain model, consisting of Phytoplankton, Zooplankton, and Fish, in the contaminated environment is proposed and studied. Modified Leslie–Gower model with Holling type IV functional response are used to describe the growth of Fish and the food transition throughout the food chain, respectively. The toxic substance affects directly the Phytoplankton and indirectly the other species. The local stability analysis of all possible equilibrium points is done. The persistence conditions of the model are established. The basin of attraction for each point is specified using the Lyapunov function. Bifurcation analysis near the coexistence equilibrium point is investigated. Detecting the existence of chao
... Show MoreConcrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show MoreBuilding a geological model is an essential and primary step for studying the reservoir’s hydrocarbon content and future performance. A three-dimensional geological model of the Asmari reservoir in Abu- Ghirab oil field including structure, stratigraphy, and reservoir petrophysical properties, has been constructed in the present work.
As to underlying Formations, striking slip faults developed at the flank and interlayer normal. Abu Ghirab oilfields are located on the eastern anticlinal band, which has steadily plunged southward. 3D seismic interpretation results are utilized to build the fault model for 43 faults of the Asmari Formation in Abu Ghirab Oilfield. A geographic facies model with six different rock facies type
... Show MoreIn this paper, the single scatter model for gamma backscatter densitometer has been used to investigate the materials of Halley’s nucleus. Monte Carlo simulation tool is used for the evaluation and calibration of gamma backscatter densitometer; and also used to calculate the bulk density. A set of parameters effecting detected count rate of γ – ray backscattering, mainly the source energy, the source – detector separation (sonde length), density and composition, were calculated.
Results obtained with the present method are compared with experimental data and the computed data may be considered entirely satisfactory.
The present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1
... Show MoreThe problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work tha
... Show MoreThis paper deals with constructing mixed probability distribution from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are ( .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β) are estimated by three different methods, which are maximum likelihood, and Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.
A reliability system of the multi-component stress-strength model R(s,k) will be considered in the present paper ,when the stress and strength are independent and non-identically distribution have the Exponentiated Family Distribution(FED) with the unknown shape parameter α and known scale parameter λ equal to two and parameter θ equal to three. Different estimation methods of R(s,k) were introduced corresponding to Maximum likelihood and Shrinkage estimators. Comparisons among the suggested estimators were prepared depending on simulation established on mean squared error (MSE) criteria.