The present work is conducted on the Paleozoic (Ordovician) Khabour and the (Silurian) Akkas shales in the Akkas-1 well of western Iraq. The study is aiming to determine the implications of clay mineral transformation, organic mineral distribution and maturity of hydrocarbon generation, using X-ray diffraction (XRD), scanning electron microscopy (SEM) in addition to organic matter concentrations. In the shale of the Khabour Formation, amorphous organic matter is common and includes various Tasmanite-type organic matter, vitrinite, inertinite, and bituminite. The main clay minerals observed include illite, chlorite, kaolinite, in addition to mixed-layer illite-smectite and rare smectite. In Silurian shale, high content of organic matter is recorded in addition to abundant vitrinite and low content of grainy organic matter (Tasmanites) and pyrite. Illite and kaolinite are commonly found in addition to chlorite and illite-smectite clay minerals. Conversion of smectite to mixed-layer illite-smectite (I-S) and an increase in vitrinite reflectance are commonly observed below 2500 m depth in the studied formations, which coincides with oil and gas generation. These results could be used as an indication of higher maturity and hydrocarbon generation in the deeply buried shale of the Khabour and Akkas formations in western Iraq.
Many additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting o
The development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so
The aim of this research is to measure the changes of Iraqi Marshland's area as well as the changes in the spectral reflectivity water quality, analyzing seasonal difference in AL-Hawizah marshes, South of Iraq using Geographic Information Systems (GIS) and remote sensing techniques. For this paper, the samples were taken at 10 sites along the study area. Satellite images of the 8 Landsat on 20/5/2017, 8/8/2017, 11/10/2017 and 14/12/2017 have been selected in order to study the seasonal changes on the marshes took place during 2017. The reflectance values of red, green, blue and near infrared bands showed that are significantly associated with a seasonal factor. All bands show that reflectivity of the marsh has been affected by locationa
... Show MoreA New ligand, N-(2-oxo-1,2- Dihydropyrimidin-4- ylcarbamothioyl) Acetamide (DPA) was prepared by reaction of iso thiosyanate derivative with Cytosine. The ligand has been characterized through elemental analysis, H1 NMR, C13NMR, FT-IR, and UV Visible spectra, such ligand’s transition metal complexes have been characterized through conductivity measurement, FT-IR, UV Visible spectra and magnetic susceptibility, all the complexes of this ligand are solid crystal and molar ratio (2:1) (ligand: metal). The form of molecular for these complexes octa hedral. The general formula [M(DPA)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
In a world of fierce competition companies of different activities strive to strengthen their competitiveness in order to be able to deliver greater value to their customers and gain a distinct sites in competition with other companies in the market at the local and international levels. Every company seeks to focus on one or more of the competitive capabilities in order to turn it into an obvious advantage or a number of competitive advantages to contribute in improving the performance and superiority over its competitors. Therefore, the management of companies no longer need only useful information for the internal aspects of the environment, but also need to include the external environment that includes various and constantly changin
... Show MoreThis paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio wa
... Show MoreThe aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show MoreThe aim of this paper is to compare between classical and fuzzy filters for removing different types of noise in gray scale images. The processing used consists of three steps. First, different types of noise are added to the original image to produce a noisy image (with different noise ratios). Second, classical and fuzzy filters are used to filter the noisy image. Finally, comparing between resulting images depending on a quantitative measure called Peak Signal-to-Noise Ratio (PSNR) to determine the best filter in each case.
The image used in this paper is a 512 * 512 pixel and the size of all filters is a square window of size 3*3. Results indicate that fuzzy filters achieve varying successes in noise reduction in image compared to
This research aims to removes dyes from waste water by adsorption using banana peels. The conduct experiment done by banana powder and banana gel to compare between them and find out which one is the most efficient in adsorption. Studying the effects different factors on adsorption material and calculate the best removal efficiency to get rid of the methylene blue dye (MB).