Neuroimaging is a description, whether in two-dimensions (2D) or three-dimensions (3D), of the structure and functions of the brain. Neuroimaging provides a valuable diagnostic tool, in which a limited approach is used to create images of the focal sensory system by medicine professionals. For the clinical diagnosis of patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the accurate identification of patients from normal control persons (NCs) is critical. Recently, numerous researches have been undertaken on the identification of AD based on neuroimaging data, including images with radiographs and algorithms for master learning. In the previous decade, these techniques were also used slowly to differentiate AD and MCI symptoms from structure classification methods. This review focuses on neuroimaging studies conducted to detect and classify AD, through a survey based on Google Scholar content. We explore the challenges of this field and evaluate the performance of these studies along with their negative aspects.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreBackground: Most prevalent chronic liver disease in developed and developing nations is non-alcoholic fatty liver disease. From fatty liver, which often has benign, non-progressive clinical history, to non-alcoholic steatohepatitis, a more serious variant of fatty liver that can lead to cirrhosis and end-stage liver disease, non-alcoholic fatty liver disease encompasses broad spectrum of diseases. The gold standard for determining extent of hepatic fibrosis is still liver biopsy; however, number of noninvasive tests have been established to make diagnosis and assess effectiveness of treatment.
Objective: Aim of study was to assess effectiveness of the combination of fibroscan and
... Show MoreObjective The aim of this study was to assess whether serum cytokine levels correlate with clinical periodontal parameters in health or disease.
Materials and Methods Male subjects (40–60 years) with CP (n = 30), CP + CHD (n = 30), and healthy controls (n = 20) had plaque index (PLI), gingival index (GI), bleeding on probing, probing pocket depth (PPD), and clinical attachment level (CAL) evaluated. Serum IL-1β and IL-6 levels were quantified using enzyme-linked immunosorbent assay.
Results PLI, GI, PPD, and CAL were significantly higher in patients with CP + CHD compared to those with CP. Serum levels of IL-1β and IL-6 were also si
Background:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreLet L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Obesity is a chronic disease that may have genetic, environmental, and other causes. Obesity is a shortcut to many diseases, such as hypertension, diabetes, atherosclerosis, and other chronic diseases. Oxidative stress increases obesity through free radicals. Glutathione S-transferase (GST) is a metabolic enzyme used to remove toxins. This study aimed to determine GST activity in obese patients as a predictor of oxidative stress and the effectiveness of lipid profiling in obese patients. The study included 139 samples of obese and healthy people (obese group 84 and healthy group 55). Both groups (obese and healthy groups) were divided into four groups based on body mass index. Blood samples were collected from obese males and females in
... Show More