Preferred Language
Articles
/
ijs-2102
Approximate Treatment for The MHD Peristaltic Transport of Jeffrey Fluid in Inclined Tapered Asymmetric Channel with Effects of Heat Transfer and Porous Medium
...Show More Authors

In this paper, we discuss a fluid problem that has wide applications in biomechanics, polymer industries, and biofluids. We are concerned here with studying the combined effects of porous medium and heat transfer on MHD non-Newtonian Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel. Base equations, represented by mass conservation, motion, energy and concentration conservation, were formulated first in a fixed frame and then transformed into a moving frame. By holding the assumptions of “long wavelength and low Reynolds number” these physical equations were simplified into differential equations. Approximate solutions for the velocity profile, stream function, and temperature profile were obtained using homotopy perturbation method. Finally, the graphical expressions and analysis for velocity curve, temperature distribution, heat transfer coefficient, and stream function, via the effects of important parameters that appear in the solution form, were given and examined. These results show a parabolic behavior for velocity distribution curve, the maximum value of which appears in the central part of the channel and reduces toward the lower and upper walls, due the impact of porosity parameter . While a decreasing behavior was observed via the effect of increasing Hartman number  )because of the existence of Lorentz force). Furthermore, the plots showed an increased function for Jeffrey fluid parameter  on the magnitude of the trapped bolus.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
مقترح اسلوب IRWs الحصين لتقدير أنموذج الانحدار المقسم لحركة حمولة قاع نهر دجلة ونقطة التغيير لكمية تصريف المياه عند مدينة بغداد
...Show More Authors

              يتكون الانحدار المقسم من عدة أقسام تفصل بينها نقاط انتماء مختلفة، فتظهر حالة عدم التجانس الناشئة من عملية فصل الأقسام ضمن عينة البحث. ويهتم هذا البحث في تقدير موقع نقطة التغيير بين الأقسام وتقدير معلمات الأنموذج، واقتراح طريقة تقدير حصينة ومقارنتها مع بعض الطرائق المستعملة في الانحدار الخطي المقسم. وقد تم استعمال أحد الطرائق التقليدية (طريقة Muggeo) لإيجاد مقدرات الإمكان الأعظم بالأسلوب الت

... Show More
View Publication Preview PDF
Crossref