Internet of Things (IoT) contributes to improve the quality of life as it supports many applications, especially healthcare systems. Data generated from IoT devices is sent to the Cloud Computing (CC) for processing and storage, despite the latency caused by the distance. Because of the revolution in IoT devices, data sent to CC has been increasing. As a result, another problem added to the latency was increasing congestion on the cloud network. Fog Computing (FC) was used to solve these problems because of its proximity to IoT devices, while filtering data is sent to the CC. FC is a middle layer located between IoT devices and the CC layer. Due to the massive data generated by IoT devices on FC, Dynamic Weighted Round Robin (DWRR) algorithm was used, which represents a load balancing (LB) algorithm that is applied to schedule and distributes data among fog servers by reading CPU and memory values of these servers in order to improve system performance. The results proved that DWRR algorithm provides high throughput which reaches 3290 req/sec at 919 users. A lot of research is concerned with distribution of workload by using LB techniques without paying much attention to Fault Tolerance (FT), which implies that the system continues to operate even when fault occurs. Therefore, we proposed a replication FT technique called primary-backup replication based on dynamic checkpoint interval on FC. Checkpoint was used to replicate new data from a primary server to a backup server dynamically by monitoring CPU values of primary fog server, so that checkpoint occurs only when the CPU value is larger than 0.2 to reduce overhead. The results showed that the execution time of data filtering process on the FC with a dynamic checkpoint is less than the time spent in the case of the static checkpoint that is independent on the CPU status.
In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreThe comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show More