The aims of this paper is investigating the spread of AIDS both within-host, through the contact between healthy cells with free virus inside the body, and between-host, through sexual contact among individuals and external sources of infectious. The outbreak of AIDS is described by a mathematical model consisting of two stages. The first stage describes the within-host spread of AIDS and is represented by the first three equations. While the second stage describes the between-host spread of AIDS and represented by the last four equations. The existence, uniqueness and boundedness of the solution of the model are discussed and all possible equilibrium points are determined. The local asymptotic stability (LAS) of the model is studied, while suitable Lyapunov functions are used to investigate the global asymptotic stability (GAS) of the model. Optimal control strategy is used to control the outbreak of AIDS. Finally, a numerical simulation is carried out to confirm the analytical results and understand the effects of varying the parameters on the spread of disease.
Background: Data on SARS-CoV-2 from developing countries is not entirely accurate, demanding incorporating digital epidemiology data on the pandemic.
Objectives: To reconcile non-Bayesian models and artificial intelligence connected with digital and classical (non-digital) epidemiological data on SARS-CoV-2 pandemic in Iraq.
Results: Baghdad and Sulaymaniyah represented statistical outliers in connection with daily cases and recoveries, and daily deaths, respectively. Multivariate tests and neural networks detected a predictor effect of deaths, recoveries, and daily cases on web searches concerning two search terms, "كورونا" and "Coronavirus" (Pillai's Trace val
In the present study, gold nanoparticles (AuNPs) were prepared using a simple low cost method synthesized cold plasma at different exposure time . The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AuNPs showed surface Plasmon resonance centered at 530, 540,and 533 nm. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of gold nanoparticles for all samples were prepared .The average crystallite size of the AuNPs was 20-40 nm. Morphology of the AuNPs were carried out using FESEM. Observations show that the AuNPs synthesized we well dispersed with and particle sizes ranging from 9 to 31 nm with spherical shapes which are cle
... Show MoreThe process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The develop
... Show MoreTerrestrial laser scanners (TLSs) are 3D imaging systems that provide the most powerful 3D representation and practical solutions for various applications. Hence this is due to effective range measurements, 3D point cloud reliability, and rapid acquisition performance. Stonex X300 TOF scanner delivered better certainty in far-range than in close-range measurements due to the high noise level inherent within the data delivered from Time of Flight (TOF) scanning sensors. However, if these errors are manipulated properly using a valid calibration model, more accurate products can be obtained even from very close-range measurements. Therefore, to fill this gap, this research presents a user-oriented target-based calibration routine to
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks
... Show MoreWe propose a new object tracking model for two degrees of freedom mechanism. Our model uses a reverse projection from a camera plane to a world plane. Here, the model takes advantage of optic flow technique by re-projecting the flow vectors from the image space into world space. A pan-tilt (PT) mounting system is used to verify the performance of our model and maintain the tracked object within a region of interest (ROI). This system contains two servo motors to enable a webcam rotating along PT axes. The PT rotation angles are estimated based on a rigid transformation of the the optic flow vectors in which an idealized translation matrix followed by two rotational matrices around PT axes are used. Our model was tested and evaluated
... Show MoreThe process of converting coordinates is, still, considered an important and difficult issue due to the way of conversion from geographic ellipsoidal system to the projected flat system. The most common method uses contiguous UTM system as one of the most accurate systems in the conversion process, but the users of the
system face problems related to contiguity, especially at the large areas that lie within more than one zone. The aim of the present research is to solve the problem related to the multiple zones coverage found in the Iraqi territory using a mathematical model based on the use of Taylor series. The most accurate conversion equation used in this paper was based on the 4th order polynomial of two variables. The calculatio
In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.