Preferred Language
Articles
/
ijs-2040
Using Affiliation Rules-based Data Mining Technique in Referral System

Referral techniques are normally employed in internet business applications. Existing frameworks prescribe things to a particular client according to client inclinations and former high evaluations. Quite a number of methods, such as cooperative filtering and content-based methodologies, dominate the architectural design of referral frameworks. Many referral schemes are domain-specific and cannot be deployed in a general-purpose setting. This study proposes a two-dimensional (User × Item)-space multimode referral scheme, having an enormous client base but few articles on offer. Additionally, the design of the referral scheme is anchored on the  and  articles, as expressed by a particular client, and is a combination of affiliation rules mining and the content-based method. The experiments used the dataset of MovieLens, consisting of 100,000 motion pictures appraisals on a size of 1-5, from 943 clients on 1,682 motion pictures. It utilised a five-overlap cross appraisal on a (User × Item)-rating matrix with 12 articles evaluated by a minimum of 320 clients. A total of 16 rules were generated for both  and  articles, at 35% minimum support and 80% confidence for the  articles and 50% similitude for the . Experimental results showed that the anticipated appraisals in denary give a better rating than other measures of exactness. In conclusion, the proposed algorithm works well and fits on two dimensional -space with articles that are significantly fewer than users, thus making it applicable and effective in a variety of uses and scenarios as a general-purpose utility.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Scopus (4)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Subsurface 3D Prediction Porosity Model from Converted Seismic and Well Data Using Model Based Inversion Technique

Seismic inversion technique is applied to 3D seismic data to predict porosity property for carbonate Yamama Formation (Early Cretaceous) in an area located in southern Iraq. A workflow is designed to guide the manual procedure of inversion process. The inversion use a Model Based Inversion technique to convert 3D seismic data into 3D acoustic impedance depending on low frequency model and well data is the first step in the inversion with statistical control for each inversion stage. Then, training the 3D acoustic impedance volume, seismic data and porosity wells data with multi attribute transforms to find the best statistical attribute that is suitable to invert the point direct measurement of porosity from well to 3D porosity distribut

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
2019 International Conference On Automation, Computational And Technology Management (icactm)
Multi-Resolution Hierarchical Structure for Efficient Data Aggregation and Mining of Big Data

Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Scopus Crossref
View Publication
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
DNA Encoding for Misuse Intrusion Detection System based on UNSW-NB15 Data Set

Recent researches showed that DNA encoding and pattern matching can be used for the intrusion-detection system (IDS), with results of high rate of attack detection. The evaluation of these intrusion detection systems is based on datasets that are generated decades ago. However, numerous studies outlined that these datasets neither inclusively reflect the network traffic, nor the modern low footprint attacks, and do not cover the current network threat environment. In this paper, a new DNA encoding for misuse IDS based on UNSW-NB15 dataset is proposed. The proposed system is performed by building a DNA encoding for all values of 49 attributes. Then attack keys (based on attack signatures) are extracted and, finally, Raita algorithm is app

... Show More
Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu May 10 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Securing Data in Wireless Body Area Network Using Hyper-Chaotic Zhou System

  E-Health care system is one of the great technology enhancements via using medical devices through sensors worn or implanted in the patient's body. Wireless Body Area Network (WBAN) offers astonishing help through wireless transmission of patient's data using agreed distance in which it keeps patient's status always controlled by regular transmitting of vital data indications to the receiver. Security and privacy is a major concern in terms of data sent from WBAN and biological sensors. Several algorithms have been proposed through many hypotheses in order to find optimum solutions. In this paper, an encrypting algorithm has been proposed via using hyper-chaotic Zhou system where it provides high security, privacy, efficiency and

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Construction of Graduation Certificate Issuing System Based on Digital Signature Technique

With the development of computer architecture and its technologies in recent years, applications like e-commerce, e-government, e-governance and e-finance are widely used, and they act as active research areas. In addition, in order to increase the quality and quantity of the ordinary everyday transactions, it is desired to migrate from the paper-based environment to a digital-based computerized environment. Such migration increases efficiency, saves time, eliminates paperwork, increases safety and reduces the cost in an organization. Digital signatures are playing an essential role in many electronic and automatic based systems and facilitate this migration. The digital signatures are used to provide many services and s

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Defence Technology
A novel facial emotion recognition scheme based on graph mining

Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T

... Show More
Scopus (36)
Crossref (32)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Computers And Electronics In Agriculture
Crossref (108)
Crossref
View Publication