An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let and be two -modules such that is singular. Then is -y-closed Rickart module if and only if Also, we study the direct sum of y-closed Rickart modules.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
Objective:
This study aims to asses the patients' compliance with essential hypertension in respect to antihypertensive
medications, follow-up, dietary pattern and health habits, to identify the associated long-term complications, and
to find out the relationship between patient's compliance, and demographic characteristics such as age, gender,
level of education, and duration of disease.
Methodology:
A descriptive study was carried out in Nasiriyah Teaching Hospital to achieve presented objectives .
Results:
The results of the study revealed that there were a significant association between educational level and total
patient's compliance, a significant association was found between the duration of disease and
Objective:
This study aims to asses the patients' compliance with essential hypertension in respect to antihypertensive
medications, follow-up, dietary pattern and health habits, to identify the associated long-term complications, and
to find out the relationship between patient's compliance, and demographic characteristics such as age, gender,
level of education, and duration of disease.
Methodology:
A descriptive study was carried out in Nasiriyah Teaching Hospital to achieve presented objectives .
Results:
The results of the study revealed that there were a significant association between educational level and total
patient's compliance, a significant association was found between the duration of disease and
Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreThis paper generalizes and improves the results of Margenstren, by proving that the number of -practical numbers which is defined by has a lower bound in terms of . This bound is more sharper than Mangenstern bound when Further general results are given for the existence of -practical numbers, by proving that the interval contains a -practical for all
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by U⊆_⊕ M) such that K β_r U. A β_r is a relation of K⊆M and U⊆M, which defined as K β_r U if and only if K ⋂U⊆_r K and K⋂U⊆_r U.