The detection of diseases affecting wheat is very important as it relates to the issue of food security, which poses a serious threat to human life. Recently, farmers have heavily relied on modern systems and techniques for the control of the vast agricultural areas. Computer vision and data processing play a key role in detecting diseases that affect plants, depending on the images of their leaves. In this article, Fuzzy- logic based Histogram Equalization (FHE) is proposed to enhance the contrast of images. The fuzzy histogram is applied to divide the histograms into two subparts of histograms, based on the average value of the original image, then equalize them freely and independently to conserve the brightness of the image. The proposed method was evaluated using two well-known parameters: Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The best results were reflected by MSE = 0.071 and PSNR =39.58 for the Mildew Powdery disease. It is impressive to recognize that the proposed method yielded clear positive outcomes through producing better contrast enhancement while preserving the details of the original image, as confirmed by the subjective metrics.
All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing (FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals. © 2015 Chinese Laser Press
Many recent satellite image compression methods depends on removing the spectral and spatial redundancies within image only , such these methods known as intra-frame(image) coding such as predictive and transformed based techniques , but these contributions needs a hard work in order to improve the compression performance also most of them are applied on individual data. The other trend is to exploit the temporal redundancy between the successive satellite images captured for the same area from different views, different sensors, or at different times, which will be much correlated and removing this redundancy will improve the compression performance and this principle known as inter-frame(image) coding .In this paper, a latest powerful
... Show MorebACKGROUND:
One major problem facing some environments, such as insurance companies and government institutions, is when a massive amount of documents has to be processed every day. Thus, an automatic stamp recognition system is necessary. The extraction and recognition of a general stamp is not a simple task because it may have various shapes, sizes, backgrounds, patterns, and colors. Moreover, the stamp can be printed on documents with bad quality and rotation with various angles. Our proposed method presents a new approach for the preprocessing and recognition of color stamp images. It consists of four stages, which are stamp extraction, preprocessing, feature extraction, and matching. Stamp extraction is achieved to isol
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThe transportation problem (TP) is employed in many different situations, such as scheduling, performance, spending, plant placement, inventory control, and employee scheduling. When all variables, including supply, demand, and unit transportation costs (TC), are precisely known, effective solutions to the transportation problem can be provided. However, understanding how to investigate the transportation problem in an uncertain environment is essential. Additionally, businesses and organizations should seek the most economical and environmentally friendly forms of transportation, considering the significance of environmental issues and strict environmental legislation. This research employs a novel ranking function to solve the transpor
... Show MoreRate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in
... Show MoreThe hiding of information has become of great importance in recent times. With dissemination through the internet, and communication through satellites, information needs to be secure. Therefore, a new algorithm is proposed that enables secret messages to be embedded inside satellite images, wherein images of any size or format can be hidden, using a system’s image compression techniques. This operation is executed in three main steps: first phase – the original image is converted into a raster image; second phase– steganography, in which a binary secret message is hidden inside a raster image, using a 4×4 array as the secret key; and third phase– compre
... Show More