Preferred Language
Articles
/
ijs-2015
Strongly Hollow R - Annihilator Lifting Modules and Strongly R - Annihilator (Hollow- Lifting) Modules

Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if  (denoted by K  F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with  hollow, there exists a fully invariant direct summand K of W such that K  F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with   R - a - hollow, there exists a fully invariant direct summand K of W such that K  F in W.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
F-µ-Semiregular Modules

Let  R be an associative ring with identity and let M be a left R-module . As a generalization of µ-semiregular modules, we introduce an F-µ-semiregular module. Let F be a submodule of M and x∊M. x is called F-µ-semiregular element in M , if there exists a decomposition M=A⨁B, such that A is a projective submodule of  and . M is called  F-µ-semiregular if x is F-µ-semiregular element for each x∊M. A condition under which the module µ-semiregular is F-µ-semiregular module was given. The basic properties and some characterizations of the F-µ-semiregular module were provided.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
2-Quasi-prime modules

     We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever ,  and , then either  or .

Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
e*-Extending Modules

     This paper aims to introduce the concepts of  -closed, -coclosed, and -extending modules as generalizations of the closed, coclossed, and extending modules,  respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.

Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-semiprime Modules

    Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever   is a Prime Ideal For proper submodule N of  B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever  annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of  prime module and quasi

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Max-Modules

   In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M;       In other words, M is a Max– module iff (0) is a *- submodule, where  a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly.       In this paper, some properties and characterizations of max– modules and  *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Supplement Extending Modules

In this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiprime Fuzzy Modules

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
On (m,n) (U,R) – Centralizers

Let m ≥ 1,n ≥ 1 be fixed integers and let R be a prime ring with char (R) ≠2 and
(m+n). Let T be a (m,n)(U,R)-Centralizer where U is a Jordan ideal of R and T(R)
⊆ Z(R) where Z(R) is the center of R ,then T is (U,R)- Centralizer.

View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .     In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their adv

... Show More
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
P-small Compressible Modules and P-small Retractable Modules

Let  be a commutative ring with 1 and  be left unitary  . In this papers we introduced and studied concept P-small compressible  (An     is said to be P-small compressible if  can be embedded in every of it is nonzero P-small submodule of . Equivalently,  is P-small compressible if there exists a monomorphism  , ,     is said to be P-small retractable if  , for every non-zero P-small submodule of . Equivalently,  is P-small retractable if there exists a homomorphism  whenever  as a generalization of compressible  and retractable  respectively and give some of their advantages characterizations and examples.

Crossref
View Publication Preview PDF