Aluminum doped zinc oxide nanoparticles (AZO) with different doping concentrations were prepared by Nd-YAG laser ablation of target in deionized water. The characterization of these nanoparticles was performed using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and photoluminance spectroscopy (PL). FTIR spectra confirmed the formation of vibrational bonds for ZnO NPs and AZO NPs. SEM images illustrated that the size and shape of the NPs changed with changing the number of laser pulses. Photoluminescence peaks exhibited two emission peaks, one at the UV region and the second in the visible region, which were modified as the number of laser pulses and doping concentration were changed.
The influence of anodization time with the electrochemical cell design on the fabrication process of porous silicon (PS) nanostructures based on two electrochemical anodization cells (designed single tank cell and double tank cell) with two anodization times (10 and 30 minutes) was studied. Atomic force Microscopy (AFM) characterization had revealed three types of pores, mesopores, mesopore fill of mesopores, and macropore fill of mesopores were obtained from designed single tank cell with (10 and 30 minutes) of anodization time, whilst for double tank cell has not revealed precise information about the size and type of pores. Pores formation have been further approved by current-voltage (I-V) measurement and pho
... Show MoreThe optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the
... Show MoreIn this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show MoreIn this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives
have been prepared by condensation of thiosemicarbazide and different substituted
aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6),
these compounds have characterized by its physical properties and spectroscopic
methods. This work also included theoretical study to prove the ability of these
compounds as corrosion inhibitors; The program package of Gaussian 09W with its
graphical user interface GaussView 5.0 had used for this purpose; the methods of
Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of
B3LYP and semiempirical method of PM3 have been used, the study included
t
The CdS quantum dots were prepared by chemical reaction
of cadmium oleylamine (Cd –oleylamine complex) with the
sulfite-oleylamine (S-oleylamine) with 1:6 mole ratios. The
optical properties structure and spectroscopy of the product
quantum dot were studied. The results show the dependence of the
optical properties on the crystal dimension and the formation of
the trap states in the energy band gap.
Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show MoreThe purpose of this study is to investigate the histopathological response of dentinopulpal
response of human teeth to the Er: YAG laser cavity preparation in comparison with the conventional
class I cavity preparation. Thirty five sound human upper and lower first premolar teeth which were
needed to be extracted for orthodontic purposes were used in the study. Regarding to the method of
cavity preparation, the teeth were grouped into three groups; Group1; Control group which consists of
seven sound teeth without cavity preparation, Group2; Conventional cavity preparation group and group
3; Er: YAG laser cavity preparation group. Each of Group2 and3 consists of fourteen teeth that is
subdivided into: A. 7teeth that e
In this study ZnS thin film was prepared by using thermal evaporation vacuum technique under the pressure (10-6) Torr on glass substrate at room temperature and annealing at 523 K Samples were irradiated to CO2 laser of power (1 watt) and wave length (10.6) μm at distance 10 cm from the source during (5 sec). The absorbance spectra was recorded by using UV-visible spectrophotometer and used to calculated some of optical properties investigated including their transmittance, reflectance spectra, energy gap, and extinction coefficient. From the result of thin films samples at room temperature and at 523 K, we conclude that the irradiation by laser causes a decrease in the transmittance and increasing in reflection and extinction coeffic
... Show MoreIn this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show More