The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recognition studies were performed using porosity combination cross plots. Petrophysical characteristics were determined and plotted as computer processing interpretation (CPI) using Interactive Petrophysics program. Based on petrophysical properties, Asmari Reservoir in Abu Ghirab oil field is classified into three sub formations: Jeribe/ Euphrates and Kirkuk group which is divided into two zones: upper Kirkuk zone, and Middle-Lower Kirkuk zone. Interpretation of well logs of Asmari Formation indicated a commercial Asmari Formation production with medium oil evidence in some ranges of the formation, especially in the upper Kirkuk zone at well X-1. However, well X-2, especially in the lower part of Jeribe/ Euphrates and Middle-Lower Kirkuk zone indicated low to medium oil evidence. Lithology of Asmari Formation demonstrated a range from massive dolomite in Jeribe/ Euphrates zone to limestone in upper Kirkuk zone and limestone and sandstone in middle-lower Kirkuk zone, whereas mineralogy of the reservoir showed calcite and dolomite with few amounts of anhydrite.
Polycrystalline Indium oxide (In2O3) and Indium oxide-zinc oxide (IZO) thin films mixed with 10% ZnO content were prepared by spray-pyrolysis technique at relatively low substrate temperature (150 ˚C).Field emission scanning electron microscope (FE-SEM) shows that the nanostructure at 10% ZnO content has pyramid like structure. The hall effect measurements show that the prepared samples have n-type charge carriers .The films were examined as gas sensor against H2S gas at different operating temperatures (200, 250 and 300) oC, and it was found that the IZO sample a good sensitivity to H2S gas ~ 572 % at operating temperature 200 oC, with relatively fast response time of 19 s and recovery time of 17
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
Background: Many cardiac diseases can cause cardiac hypertrophy developed by the established cardiac overload, such as long term of uncontrolled hypertension, valvuler disease or congenital anomaly and many more causes. If the cause of hypertrophy persists for long time it will generate heart failure, as a result changes in size, shape and function of the heart which refer as remodeling.
Objective: To investigate the types of remodeling in patients with heart failure, and study its relation with cardiac performance.
Patients and methods: The study included fifty normal individuals and fifty patients, only those patients who developed hypertrophy and failure were chosen. The study has included the measurements of many cardiac parame
Background: Giant middle cerebral artery (MCA) aneurysms are surgically challenging lesions. Because of the complexity and variability of these aneurysms, a customized surgical technique is often needed for each case. In this article, we present a modified clip reconstruction technique of a ruptured complex giant partially thrombosed middle cerebral artery aneurysm.
Case description: The aneurysm was exposed using the pterional approach. Following proximal control, the aneurysm sac was decompressed. Then, we applied permanent clips to reconstruct the aneurysm neck. The configuration of the aneurysm mandated a tailored clipping pattern to account for resi
... Show MoreIn this paper, an algorithm for binary codebook design has been used in vector quantization technique, which is used to improve the acceptability of the absolute moment block truncation coding (AMBTC) method. Vector quantization (VQ) method is used to compress the bitmap (the output proposed from the first method (AMBTC)). In this paper, the binary codebook can be engender for many images depending on randomly chosen to the code vectors from a set of binary images vectors, and this codebook is then used to compress all bitmaps of these images. The chosen of the bitmap of image in order to compress it by using this codebook based on the criterion of the average bitmap replacement error (ABPRE). This paper is suitable to reduce bit rates
... Show MoreData security is a significant requirement in our time. As a result of the rapid development of unsecured computer networks, the personal data should be protected from unauthorized persons and as a result of exposure AES algorithm is subjected to theoretical attacks such as linear attacks, differential attacks, and practical attacks such as brute force attack these types of attacks are mainly directed at the S-BOX and since the S-BOX table in the algorithm is static and no dynamic so this is a major weakness for the S-BOX table, the algorithm should be improved to be impervious to future dialects that attempt to analyse and break the algorithm in order to remove these weakness points, Will be generated dynamic substitution box (S-B
... Show MoreThis paper proposes a new algorithm (F2SE) and algorithm (Alg(n – 1)) for solving the
two-machine flow shop problem with the objective of minimizing total earliness. This
complexity result leads us to use an enumeration solution approach for the algorithm (F2SE)
and (DM) is more effective than algorithm Alg( n – 1) to obtain approximate solution.
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreThis research is devoted to study the strengthening technique for the existing reinforced concrete beams using external post-tensioning. An analytical methodology is proposed to predict the value of the effective prestress force for the external tendons required to close cracks in existing beams. The external prestressing force required to close cracks in existing members is only a part from the total strengthening force.
A computer program created by Oukaili (1997) and developed by Alhawwassi (2008) to evaluate curvature and deflection for reinforced concrete beams or internally prestressed concrete beams is modified to evaluate the deflection and the stress of the external tendons for the externally strengthened beams using Matlab
In this paper, the survival function has been estimated for the patients with lung cancer using different parametric estimation methods depending on sample for completing real data which explain the period of survival for patients who were ill with the lung cancer based on the diagnosis of disease or the entire of patients in a hospital for a time of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the estimation of the survival function for the lung cancer by using pre-test singles stage shrinkage estimator method was the best . <
... Show More