Preferred Language
Articles
/
ijs-1891
Hybrid Filter for Enhancing Input Microphone-Based Discriminative Model

Voice denoising is the process of removing undesirable voices from the voice signal. Within the environmental noise and after the application of speech recognition system, the discriminative model finds it difficult to recognize the waveform of the voice signal. This is due to the fact that the environmental noise needs to use a suitable filter that does not affect the shaped waveform of the input microphone. This paper plans to build up a procedure for a discriminative model, using infinite impulse response filter (Butterworth filter) and local polynomial approximation (Savitzky-Golay) smoothing filter that is a polynomial regression on the signal values. Signal to noise ratio (SNR) was calculated after filtering to compare the results after and before adding the Savitzky-Golay smoothing filter. This procedure showed better results for the filtering of ambient noise and protecting a waveform from distortion, which makes the discriminative model more accurate when recognizing voice. Our procedure for preprocessing was developed and successfully implemented on a discriminative model by using MATLAB.

 

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Enforcing Wiener Filter in the Iterative Blind Restoration Algorithm

A new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the
psf environments

View Publication Preview PDF
Publication Date
Tue Jan 11 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Rheological Investigation of Lipid Polymer Hybrid Nanocarriers for Oral Delivery of Felodipine (Conference Paper )#

The rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers  (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem t

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Performance Evaluation of Trickling Filter and Extended Aeration of Wastewater Treatment Plants

In recent decades, there has been increasing interest in wastewater treatment because of its direct impact on the environment and public health. Over time, other forms of treatment have been developed and modified, including extended aeration. This process is included in the suspended growth system. In this paper, a comparative study was conducted between the efficiency of the extended aeration plant and that of the trickling filter plant in removal of BOD and COD.  The method of comparison was done by knowing the value of the pollutant before and after the treatment and then extract the removal ratio of each pollutant within each plant. The results showed that the percentage of removal of BOD in the trickling filte

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Jun 21 2022
Journal Name
Peerj Computer Science
Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models

Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently

... Show More
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Propose an Efficient Face Recognition Model in WSN Based on Zak Transform

The need for a flexible and cost effective biometric security system is the inspired of this paper. Face recognition is a good contactless biometric and it is suitable and applicable for Wireless Sensor Network (WSN). Image processing and image communication is a challenges task in WSN due to the heavy processing and communication that reduce the life time of the network. This paper proposed a face recognition algorithm on WSN depending on the principles of the unique algorithm that hold the capacity of the network to the sink node and compress the communication data to 89.5%. An efficient hybrid method is introduced based upon the advantage of Zak transform to offprint the farthest different features of the face and Eigen face method to

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Extractive Multi-Document Text Summarization Using Multi-Objective Evolutionary Algorithm Based Model

Automatic document summarization technology is evolving and may offer a solution to the problem of information overload. Multi-document summarization is an optimization problem demanding optimizing more than one objective function concurrently. The proposed work considers a balance of two significant objectives: content coverage and diversity while generating a summary from a collection of text documents. Despite the large efforts introduced from several researchers for designing and evaluating performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. The design of gener

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
Crossref (2)
Crossref
View Publication
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.