Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.
This research focused on clarifying the relationship strategic decisions for operations management & performance excellence organizational, The research emerges from a problem which explained by many application questions. Special questionnaire has been prepared for this purpose distributed (72) to sample of management levels (Top, middle) in the General company for mining industries and aquatic Insullation & the General company of batteries industry, The research has tried to test a number hypotheses related to the relation and regression among the variables of the research, and the differences among the <
... Show MoreThe Sebkha is considered the evaporative geomorphological features, where climate plays an active role. It forms part of the surface features in Mesopotamia plain of Iraqi, which is the most fertile lands, and because of complimentary natural and human factors turned most of the arable land to the territory of Sebkha lands. The use satellite image (Raw Data), Landsat 30M Mss for the year 1976 Landsat 7 ETM, and the Landsat 8 for year 2013 (LDCM) for the summer Landsat Data Continuity Mission and perform geometric correction, enhancements, and Subset image And a visual analysis Space visuals based on the analysis of spectral fingerprints earth's This study has shown that the best in the discrimination of Sebkha Remote sensing techniques a
... Show MoreThis study aims at evaluating the performance of MA students in the College of Education for Women in using the digital transformation and identifying the significant difference in performance evaluation according to the variable of academic qualification (Master or PHD). In order to achieve the aim of the research the researcher prepared a questionnaire of 20 items, and this happens after the researcher's getting acquaintance of the literature of previous studies related to the variable of the research. The apparent validity of the items was examined by exposing them to 10 juries specialized in education, psychology and evaluation and measurement. The stability of the items was examined via two methods, the test-repetition and half-divisio
... Show MoreIn this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show MoreBackground: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.
Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreThe process of stocks evaluating considered as a one of challenges for the financial analysis, since the evaluating focuses on define the current value for the cash flows which the shareholders expected to have. Due to the importance of this subject, the current research aims to choose Fama & French five factors Model to evaluate the common stocks to define the Model accuracy in Fama& French for 2014. It has been used factors of volume, book value to market value, Profitability and investment, in addition to Beta coefficient which used in capital assets pricing Model as a scale for Fama & French five factors Model. The research sample included 11 banks listed in Iraq stock market which have me
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m