Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.
Abstract
The research aims to shed light on the extent to which the practices of performance management in achieving organizational excellence in one of the formations and the Ministry of Finance (GCT). The importance of the selection of these organizations is that they occupies a large and exceptional importance in the national economy through income redistribution add it to cover a large part of the state budget revenues, these organizations possess functionally diverse cadre of them pregnant initial certification and other senior and he fairly stable To meet this target, and on the basis of the data search exploratory researcher built model hypothesis for the search included variable impressionist and
... Show MoreThis research was designed to study effect of performance appraisal dimensions on organizational confidence.
Asset completion questionnaire was used to collect data of this research from a random simple represent forty employees who works in Iraqi Oil ministry. The main result of this research was positive relations and the effect between performance appraisal and organizational confidence. The research contains some conclusions, the main of it is unimplemented the performance appraisal results in the policies of employees in the ministry and it work in classic methods incentives and training.
The important recommendations must doing to achieve integrating between the result of pe
... Show MoreAbstract
This research is aimed at indicating the impact of business process reengineering on corporate performance in the Office of the Inspector General of the Ministry of Higher Education and Scientific Research of the Iraqi study has identified a problem in a number of the most important questions - what the impact of the Business Process Reengineering at the corporate office performance indicators respondent? What are the actual results of the analysis of paths Administrative Process Engineering and Corporate Performance respondent in the office? In order to achieve the goal of the research and answer the questions of the problem, the study applied to a sample of
... Show MoreUrinary tract infection is a bacterial infection that often affects the bladder and thus the urinary system. E. coli is one of the leading uropathogenic bacteria that cause urinary tract infections. Uropathogenic E. coli is highly effective and successful in causing urinary tract infections through biofilm formation and urothelial cell invasion mechanisms. Other organisms that cause urinary tract infections include members of the Enterobacteriaceae family, streptococci and staphylococci species and perch. In addition, K.penumoniae is another important gram-negative bacterium that causes urinary tract infections. With the PCR technique, unseen bacterial species can be detected using standard clinical microbiology methods. In this study, the
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic perform
... Show MoreThis work presents the construction of a test apparatus for air-conditioning application that is flexible in changing a scaled down adsorbent bed modules. To improve the heat and mass transfer performance of the adsorbent bed, a finned-tube of the adsorbent bed heat exchanger was used. The results show that the specific cooling power (SCP) and the coefficient of performance (COP) are 163 W/kg and 0.16, respectively, when the cycle time is 40 min, the hot water temperature is 90oC, the cooling water temperature is 30oC and the evaporative water temperature is 11.4oC.
Abstract
In this work, diabetic glucose concentration level control under disturbing meal has been controlled using two set of advanced controllers. The first set is sliding mode controllers (classical and integral) and the second set is represented by optimal LQR controllers (classical and Min-, ax). Due to their characteristic features of disturbance rejection, both integral sliding mode controller and LQR Minmax controller are dedicated here for comparison. The Bergman minimal mathematical model was used to represent the dynamic behavior of a diabetic patient’s blood glucose concentration to the insulin injection. Simulations based on Matlab/Simulink, were performed to verify the performance of each controll
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r
... Show MoreThe ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreWisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.