Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.
The present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreThis paper deals with the problem of the mechanics of the operation of cinematography in the development of museum exhibition halls. In the first chapter, the researcher dealt with the problem and presented it to reach the goals and purpose of the research, which was represented in using and developing the methods and mechanisms of the presentation to keep pace with what is happening in the world of technology and access to the presented model to new formula and vision declares aesthetical and cognitive measure, thus the search constitutes an importance in absorbing Scenography dimensions in the theater and moved to the idea of the museum and the development of the display models and using them in drawing and representation of perception
... Show MoreIn this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
Current study was carried out to determine the adsorption ability of the Multiwall carbon nanotubes (MWCNTs) by adsorption Malachite Green dye from an aqueous solution. Crystal structure of the materials was measured using powder X-rays diffraction (PXRD), UV–Vis diffuse reflectance and specific surface area (BET). Many parameters that affecting the adsorption process such as contact time, pH, adsorbent dosage, initial dye concentration and temperature were studied. The outcome showed that an increasing occurred in the adsorbent dosage and the rate of dye removal, and the best efficiency for Malachite Green dye removal was amounted 99. 11 %. The results were obtained at optimal reaction conditions were pH = 5.5, cata
... Show MoreIn general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreIn this work, linear and nonlinear optical properties of two types of Iraqi heavy crude oil extracted from fields in southern Iraq were determined. The nonlinear optical properties were measured utilizing Z-scan technology with He-Ne laser at 632.8 nm. It was found that nonlinear refractive index (NLR) values for the Basra and Kut heavy crude oil samples are 6.34381×10-4 and 8.25108×10-4 cm2/mW, respectively, while those for the nonlinear absorption coefficient (NLA) are 2.68942×10-5 and 2.58874×10-5 , respectively. These results showed that the two samples with linear and nonlinear optical properties can be used in optics field applications as
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreBackground: Atrioventricular nodal reentrant tachycardia (AVNRT) is the commonest regular supraventricular tachyarrhythmia. Ablation in the area of slow pathway (SP) has been successfully implemented in every day clinical electrophysiological practice for more than 20 years. Although the procedure is generally regarded as effective and safe, data on long-term effects and predictors of success or failure are incomplete.