Metal nanoparticles (NPs) of silver (Ag), copper (Cu), zinc oxide (ZnO), cadmium oxide (CdO) and tin (Sn) were synthesized by laser ablation of a solid target in de-ionized water (DI). X-ray diffraction patterns showed the formation of AgO, Ag, Cu, ZnO, CdO, and Sn NPs. Absorbance spectrum of the produced nanoparticles was measured by UV-Vis spectrophotometer which showed that Ag and CdO NPs shifted to the short wavelength (blue shift), indicating the formation of NPs with smaller sizes, whereas CuO showed the formation two peaks. ZnO and Sn NPs shifted to the long wavelength (red shift) which indicates the formation NPs with larger size. Zeta potential results proved that ZnO nanoparticles were more stable (-26.53mV) than the other metal nanoparticles, while CdO nanoparticles had more aggregation (-16.65mV).
The effect of the annealing on the optical transmission , absorp tion coefficient,
dielectric constants (ε
r
),( ε
i
) ,Skin depth and the optical ener gy gap of (ZnO)x(CdO)1-x thin
films with (x=0.05) deposited on preheated glass substrates at a temperature of (450 C°) by
chemical pyrolysis technique were performed . These f ilms show direct allowed inter band
transition that influenced by annealing at ( 450 C°) for two hours . And it also found that the
optical ener gy gap has been increased fro m about (2.50 eV) before annealing to about (2.65
eV) after annealing , fro m the analysis of the absorp tion and transmission sp ectra in the
wavelength range (380-900nm) . The results show t
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.
Porous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
In this work, thin films of undoped and Al-doped CdO with (0.5, 1 and 2) wt.% were prepared by using thermal vacuum evaporation on glass substrate at room temperature. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The spectral transmission and the optical energy band gap decrease from 75% and 2.24 eV to 20% and 2.1 eV respectively depending upon the Al content in the films, also our studies include the calculation of the optical constants (refractive index, extinction coefficient, real and imaginary part of dielectric constant) as a function of photon energy. It is evaluated that the optical band gap of
... Show MoreZinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickn
A thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show MoreIn this work, the effect of the addition of bright nickel plating and silver carried out by the electroplating method has been studied, on the coating of copper nanoparticles on the copper base metal via the process of thermal evaporation. The improvement of the solar absorber using CuNP in combination with the bright nickel and silver was obtained to be better than copper nanoparticles individually. A bright nickel enhanced the absorbed thermal stability. Also, other optical properties, absorptions, and emissivity slightly decreased from (93% to 87%), while the existence of silver had a slight impact on absorption of about (86.50%). On the other hand, thermal conductivity was evaluated using hot disk analyzer. The results showed a good
... Show MoreThin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show More