Metal nanoparticles (NPs) of silver (Ag), copper (Cu), zinc oxide (ZnO), cadmium oxide (CdO) and tin (Sn) were synthesized by laser ablation of a solid target in de-ionized water (DI). X-ray diffraction patterns showed the formation of AgO, Ag, Cu, ZnO, CdO, and Sn NPs. Absorbance spectrum of the produced nanoparticles was measured by UV-Vis spectrophotometer which showed that Ag and CdO NPs shifted to the short wavelength (blue shift), indicating the formation of NPs with smaller sizes, whereas CuO showed the formation two peaks. ZnO and Sn NPs shifted to the long wavelength (red shift) which indicates the formation NPs with larger size. Zeta potential results proved that ZnO nanoparticles were more stable (-26.53mV) than the other metal nanoparticles, while CdO nanoparticles had more aggregation (-16.65mV).
Under atmospheric pressure, an argon plasma stream was sustained and its plasma characteristics were examined. The emission spectra of plasma created in a plasma jet system using argon gas were observed for three metals (Ag, Zn, and Cu) for the anode and varied flow rates ranging from 1–4 L/min. at constant voltage, and normal atmospheric pressure. The spectral lines of excited Ar, Ag, Zn, and Cu species were identified at a wavelength of (650–900) nm .The Debye length, sphere, and temperature of an electron are all measured. Optical emission spectrometer (OES) equipment was used to capture the spectrum produced by the plasma at various argon gas flow rates.The temperature and density of the electron (Te) and (n
... Show MoreBeryllium Zinc Oxide (BexZn1-xO) ternary nano thin films were deposited using the pulsed laser deposition (PLD) technique under a vacuum condition of 10-3 torr at room temperature on glass substrates with different films thicknesses, (300, 600 and 900 nm). UV-Vis spectra study found the optical band gap for Be0.2Zn0.8O to be (3.42, 3.51 and 3.65 eV) for the (300, 600 and 900nm) film thicknesses, respectively which is larger than the value of zinc oxide ZnO (3.36eV) and smaller than that of beryllium oxide BeO (10.6eV). While the X-ray diffraction (XRD) pattern analysis of ZnO, BeO and Be 0.2 Zn 0.8 O powder and nano-thin films indicated a hexa
... Show MoreIn this research PbS and PbS:Cu films were prepered with thicknesses (0.85±0.05)?m and (0.55±0.5)?m deposit on glass and silicon substrate respectively using chemical spray pyrolysis technique with a substrate temperature 573K, from lead nitrate salt, thiourea and copper chloride. Using XRD we study the structure properties for the undoped and doped films with copper .The analysis reveals that the structure of films were cubic polycrystalline FCC with a preferred orientation along (200) plane for the undoped films and 1% doping with copper but the orientation of (111) plane is preferred with 5% doping with the rest new peaks of films and appeared because of doping. Surface topography using optical microscope were be checked, it was found
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreExploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
The microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreLeishmaniasis is an endemic disease in Iraq, where both forms of the disease, cutaneous and visceral, are found. The effect of Zinc oxide nanoparticles (ZnO NPs) with mean particle size less than 100 nanometer (nm) on viability and growth rate of Leishmania donovani promastigotes was evaluated. The anti-leishmanial activity of different concentrations (0.1, 0.2, 0.4, 0.6, 0.8, and 1 μg/ml) of ZnO NPs was investigated on promastigotes growth rates and viability in comparison to promastigotes exposed to the same concentrations of sodium stibogluconate (Sb) (pentostam).The inhibitory concentrations (IC50s) of ZnO NPs were calculated after 24 , 48 and 72 hr which were (0.871, 0.156 and 0.120 μg/ml) respectively with significant (p< 0.05
... Show MoreIn the present work, HgBa2Can-1CunO2n+2+δ superconducting thin films with (100) nm thickness were (n=1, 2 and 3) prepared by Pulsed Laser Deposition technique on glass substrate at R.T (300) K, have been synthesize. The effect of Cu content on the structural, surface morphology, optical and electrical properties of HgBa2Can-1CunO2n+2+δ films were investigated and analyzed. The results of XRD analysis show that all samples are polycrystalline structure with orthorhombic phase, the change of Cu concentration in samples produce changes in the mass density, lattice parameter and the ratio (c/a). AFM techniques were used to examine the surface morphology of HgBa2Can-1CunO2n+2+δ superconducting films, the study showed the values of surface rou
... Show More