In this paper, we introduce and study the essential and closed fuzzy submodules of a fuzzy module X as a generalization of the notions of essential and closed submodules. We prove many basic properties of both concepts.
We introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
An adaptive fuzzy weighted linear regression model in which the output is based
on the position and entropy of quadruple fuzzy numbers had dealt with. The solution
of the adaptive models is established in terms of the iterative fuzzy least squares by
introducing a new suitable metric which takes into account the types of the influence
of different imprecisions. Furthermore, the applicability of the model is made by
attempting to estimate the fuzzy infant mortality rate in Iraq using a selective set of
inputs.
In this paper, we proved the existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations of the second kind.
We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
In this paper we discuss the Zariski topology of intuitionistic fuzzy d-filter in d-algebra, with some topological properties on the spectrum of intuitionistic fuzzy d-filter in d-algebra X which have algebraic features such as connectedness. We find that this topology is a strongly connected, and T0 space. We also define the invariant map on intuitionistic fuzzy prime d-filter with a homomorphism map.
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
The aim of this study is to use style programming goal and technical programming goal fuzzy to study assessing need annual accurately and correctly depending on the data and information about the quantity the actual use of medicines and medical supplies in all hospitals and health institutions during a certain period where they were taking the company public for the marketing of medicines and medical supplies sample for research. Programming model was built goal to this problem, which included (15) variable decision, (19) constraint and two objectives:
1 - rational exchange of budget allocated for medicines and supplies.
2 - ensure that the needs of patients of medicines and supplies needed to improve
In this article, we introduce a class of modules that is analogous of generalized extending modules. First we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.
This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.