In this work, a reactive DC magnetron sputtering technique was used to prepare TiO2 thin films. The variation in argon and oxygen gases mixing ratios (4:1, 2:1, 1:1, 1:2, 1:4) was used to achieve optimal properties for gas sensing. In addition, an analysis of the optical XRD properties of TiO2 thin films is presented. High-quality and uniform nanocrystalline films were obtained at a working gas pressure of 0.25 mbar and 1:4 (Ar/O2) gas mixture. The optical properties showed a transparent thin film with uniform adherence to the substrate. The average transmission of the TiO2 films deposited on the glass substrates was higher than 95% over the range of 400 to 800 nm. The optical band gap varied from 3.84 eV to 3.93 eV as a function of oxygen/argon ratios. The XRD pattern showed that the films have an amorphous structure, which is shifted to polycrystalline with increasing oxygen to argon ratio. The sensitivity, response time, and recovery time were measured for TiO2 thin films using NO2 oxidizing gas.
In this work, the photoluminescence spectra (PL) of porous silicon (PS) have been modified by adding gold nanoparticles (AuNPs) to PS layer. PS was produced via Photo electro-chemical etching (PECE) method of n-type Si wafer with resistivity of about (10 Ω.cm) and (100) orientation. Laser wavelength of (630 nm) and illumination intensity of about (30 mW/cm2), etching current density of (10mA/cm2), and etching time of (4 min) were used during the etching process. The bare PS before metallic deposition process and porous silicon/gold nanoparticles (PS/AuNPs) structures were investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX). The photoluminescence spectra were investigated as a fu
... Show MoreThis study aimed to evaluate the surface changes of commercial pure Titanium disks (CP Ti) and the Ti 13Nb 13 Zr (Alloy) with a zigzag pattern of laser surface treatment. In vitro, experimental study of CNC Laser treatment on the CP Ti and Alloy disks. Texturing the surfaces of CP Ti and Alloy disks via CNC laser, the sample disks were analyzed using surface roughness, wettability and FESEM. The FESEM revealed a proper increase in the surface texturing and roughness on macro and micro measures without crack formation or dramatic change of the core substance of the CP Ti and Alloy disks. The CNC laser is an effective and suitable method for surface texturing CP Ti and Alloy for dental implantology. Keywords: Commercial pure Titanium;
... Show MoreBackground: In recent years, the immediate loading of dental implants has become more accepted as a standard protocol for the treatment of the edentulous area. Success in implant dentistry depends on several parameters that may improve phenomenon of osseointegration and new bone formation in close contact with the implant. The aim of study was to evaluate the effect of strontium chloride coating of screw shape commercially pure titanium dental implant osseointegration at bone - implant interface by histomorphometric analysis and compare with hydroxyapatite coating at 2 time periods (2 weeks and 6 weeks). Materials and methods: Electrophoretic Deposition Technique (EPD) was used to obtain a uniform coating layer on commercially pure titanium
... Show MoreThis study was conducted to determine the ability of water treatment system (Vortisand) to reduce some chemical and physical properties for tigris river raw water, It consisted of turbidity, electrical conductivity, pH, total hardness, calcium Hardness as well as temperature in order to determine the unit`s efficiency for reducing their concentration as compared to those in the water produced by some classical potable water projects (Dora and Wathba) in Baghdad. Samples were collected during the cold months (December 2016 and January 2017) and during the hot months (May and June 2017). The results showed that this system has the ability to reduce some properties such as turbidity, the values were 215NTU in raw water and decreased to NTU
... Show MoreThe aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
The aim of this paper is to introduce the definition of a general fuzzy norned space as a generalization of the notion fuzzy normed space after that some illustrative examples are given then basic properties of this space are investigated and proved.
For example when V and U are two general fuzzy normed spaces then the operator is a general fuzzy continuous at u V if and only if u in V implies S(u) in U.
Water pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreThe sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.