With the spread use of internet, especially the web of social media, an unusual quantity of information is found that includes a number of study fields such as psychology, entertainment, sociology, business, news, politics, and other cultural fields of nations. Data mining methodologies that deal with social media allows producing enjoyable scene on the human behaviour and interaction. This paper demonstrates the application and precision of sentiment analysis using traditional feedforward and two of recurrent neural networks (gated recurrent unit (GRU) and long short term memory (LSTM)) to find the differences between them. In order to test the system’s performance, a set of tests is applied on two public datasets. The first dataset is collected data from IMDB that contains movie reviews expressed through long sentences of English, whereas the second dataset is a collection of keyword search results of tweets using the Twitter Search API; these tweets are written in English words with short sentences. In this work, a certain pre-processing operation is added to the system and a set of tests is conducted to evaluate the performance enhancement on the whole system due to the addition of these operations. The results of the usage of the traditional feedforward neural networks are poor and do not perform the desired purpose in analysis, because of their inability to save information at a long term and, therefore, their loss of efficiency. While the results of using GRU and LSTM are relatively good and do perform the desired purpose in analysis. A recurrent neural network has been built so that any type of text-related data can be pushed to get the polarity of sentiment by multi deep operations that are dependent on the extracted information.
Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the
... Show MoreThis book includes four main chapters: 1. Indefinite Integral. 2. Methods of Integration. 3. Definite Integral. 4. Multiple Integral. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.
Schiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreThis study aimed to study the inhibition activity of purified bacteriocin produced from the local isolation Lactococcuslactis ssp. lactis against pathogenic bacteria species isolated from clinical samples in some hospitals Baghdad city. Screening of L. lactis ssp. Lactis and isolated from the intestines fish and raw milk was performed in well diffusion method. The results showed that L. lactis ssp. lactis (Lc4) was the most efficient isolate in producing the bacteriocin as well observed inhibitory activity the increased that companied with the concentration, the concentration of the twice filtrate was better in obtaining higher inhibition diameters compared to the one-fold concentration. The concentrate
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreThe existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreThis research deals with a shrinking method concerned with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained
... Show MoreAbstract:
Research Topic: Ruling on the sale of big data
Its objectives: a statement of what it is, importance, source and governance.
The methodology of the curriculum is inductive, comparative and critical
One of the most important results: it is not permissible to attack it and it is a valuable money, and it is permissible to sell big data as long as it does not contain data to users who are not satisfied with selling it
Recommendation: Follow-up of studies dealing with the provisions of the issue
Subject Terms
Judgment, Sale, Data, Mega, Sayings, Jurists
In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.