Images hold important information, especially in military and commercial surveillance as well as in industrial inspection and communication. Therefore, the protection of the image from abuse, unauthorized access, and damage became a significant demand. This paper introduces a new Beta chaotic map for encrypting and confusing the color image with Deoxyribonucleic Acid (DNA) sequence. First, the DNA addition operation is used for diffusing each component of the plain image. Then, a new Beta chaotic map is used for shuffling the DNA color image. In addition, two chaotic maps, namely the proposed new Beta and Sine chaotic maps, are used for key generation. Finally, the DNA XOR operation is applied between the generated key and shuffled DNA image to produce the cipher image. The experimental results prove that the proposed method surpassed the other methods in terms of Mean Square Error (MSE), Peak Signal-To-Noise Ratio (PSNR), entropy, and correlation coefficient.
This paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
This article investigates how an appropriate chaotic map (Logistic, Tent, Henon, Sine...) should be selected taking into consideration its advantages and disadvantages in regard to a picture encipherment. Does the selection of an appropriate map depend on the image properties? The proposed system shows relevant properties of the image influence in the evaluation process of the selected chaotic map. The first chapter discusses the main principles of chaos theory, its applicability to image encryption including various sorts of chaotic maps and their math. Also this research explores the factors that determine security and efficiency of such a map. Hence the approach presents practical standpoint to the extent that certain chaos maps will bec
... Show MoreNowadays, the rapid development of multi-media technology and digital images transmission by the Internet leads the digital images to be exposed to several attacks in the transmission process. Therefore, protection of digital images become increasingly important.
To this end, an image encryption method that adopts Rivest Cipher (RC4) and Deoxyribonucleic Acid (DNA) encoding to increase the secrecy and randomness of the image without affecting its quality is proposed. The Means Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Coefficient Correlation (CC) and histogram analysis are used as an evaluation metrics to evaluate the performance of the proposed method. The results indicate that the proposed method is secure ag
... Show MoreRecently, much secured data has been sent across the internet and networks. Steganography is very important because it conceals secure data in images, texts, audios, protocols, videos, or other mediums. Video steganography is the method of concealing data in frames of video format. A video is a collection of frames or images used for hidden script messages. This paper proposes a technique to encrypt secret messages using DNA and a 3D chaotic map in video frames using the raster method. This technique uses three steps: Firstly, converting video frames into raster to extract features from each frame. Secondly, encryption of secret messages using encoded forms of DNA bases, inverse/inverse complements of DNA, a
... Show MoreIn recent years, encryption technology has been developed rapidly and many image encryption methods have been put forward. The chaos-based image encryption technique is a modern encryption system for images. To encrypt images, it uses random sequence chaos, which is an efficient way to solve the intractable problem of simple and highly protected image encryption. There are, however, some shortcomings in the technique of chaos-based image encryption, such limited accuracy issue. The approach focused on the chaotic system in this paper is to construct a dynamic IP permutation and S-Box substitution by following steps. First of all, use of a new IP table for more diffusion of al
... Show MoreDue to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
Security concerns in the transfer of medical images have drawn a lot of attention to the topic of medical picture encryption as of late. Furthermore, recent events have brought attention to the fact that medical photographs are constantly being produced and circulated online, necessitating safeguards against their inappropriate use. To improve the design of the AES algorithm standard for medical picture encryption, this research presents several new criteria. It was created so that needs for higher levels of safety and higher levels of performance could be met. First, the pixels in the image are diffused to randomly mix them up and disperse them all over the screen. Rather than using rounds, the suggested technique utilizes a cascad
... Show MoreOne of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show MoreImage content verification is to confirm the validity of the images, i.e. . To test if the image has experienced any alteration since it was made. Computerized watermarking has turned into a promising procedure for image content verification in light of its exceptional execution and capacity of altering identification.
In this study, a new scheme for image verification reliant on two dimensional chaotic maps and Discrete Wavelet Transform (DWT) is introduced. Arnold transforms is first applied to Host image (H) for scrambling as a pretreatment stage, then the scrambled host image is partitioned into sub-blocks of size 2×2 in which a 2D DWT is utilized on ea
... Show More