In this work, a chemical optical fiber sensor based on Surface Plasmon Resonance (SPR) was designed and implemented using plastic optical fiber. The sensor is used for estimating refractive indices and concentrations of various chemical materials (methanol, distilled water, ethanol, kerosene) as well as for evaluating the performance parameters such as sensitivity, signal to noise ratio, resolution and the figure of merit of the fabricated sensor. It was found that the value of the sensitivity of the optical fiber-based SPR sensor, with 40 nm thick and 10 mm long Au metal film of exposed sensing region, was 3μm/RIU, while the SNR was 0.24, the figure of merit was 20, and the resolution was 0.00066. The sort of optical fiber utilized in this work is plastic optical fiber with a core diameter of 980 μm, a fluorinated polymer cladding of 20μm and a numerical aperture of 0.51.
Blockchain is an innovative technology that has gained interest in all sectors in the era of digital transformation where it manages transactions and saves them in a database. With the increasing financial transactions and the rapidly developed society with growing businesses many people looking for the dream of a better financially independent life, stray from large corporations and organizations to form startups and small businesses. Recently, the increasing demand for employees or institutes to prepare and manage contracts, papers, and the verifications process, in addition to human mistakes led to the emergence of a smart contract. The smart contract has been developed to save time and provide more confidence while dealing, as well a
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThe unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreThis study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat
... Show MoreIn the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreThe massive distribution and development in the digital images field with friendly software, that leads to produce unauthorized use. Therefore the digital watermarking as image authentication has been developed for those issues. In this paper, we presented a method depending on the embedding stage and extraction stag. Our development is made by combining Discrete Wavelet Transform (DWT) with Discrete Cosine Transform (DCT) depending on the fact that combined the two transforms will reduce the drawbacks that appears during the recovered watermark or the watermarked image quality of each other, that results in effective rounding method, this is achieved by changing the wavelets coefficients of selected DWT sub bands (HL or HH), followed by
... Show MoreThis work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show More