Preferred Language
Articles
/
ijs-1671
Bioremediation of Petroleum Polluted Soils using Consortium Bacteria
...Show More Authors

      This study was carried out to isolate opportunistic hydrocarbons oil-degrading bacteria and develop a consortium or a mixture of bacteria with high biodegradation capabilities which can be used in biological treatment units of the contaminated water before release. The biological processes in general are environmentally friendly and cost effective, as they are easy to design and apply; as such they are more appropriate to the public.

    The location of the study was in Al-Dora refinery sludge holes area. The samples were collected for three seasons (winter, spring and summer) each consisted of three months.  The sludge samples were analyzed for various physical and chemical parameters. Temperature values of the sludge were at maximum in summer season, reaching 32ËšC, whereas they were at minimum in winter (24 ËšC). The values of sludge pH were at maximum in summer (9.70) and minimum in winter (9.20). Turbidity levels were 382 NTU in spring and 353 NUT in winter. Biological oxygen demand (BOD5) was at maximum in summer (760) and (690 mg/l) in winter. The maximum dissolved oxygen (DO) value of 5.20 mg/l was recorded in winter, while the minimum was 3.80 mg/l recorded in summer. The maximum electrical conductivity (EC) was 17130 μs/cm recorded in summer, while the minimum was 16150 μs/cm recorded in winter. The maximum total dissolved solids (TDS) values were 10335 mg/l recorded in summer, while the minimum (10015 mg/l) was recorded in winter. The maximum total petroleum hydrocarbon (TPH) value (431 mg/l) was recorded in summer, while the minimum (367 mg/l) was recorded in spring. Finally, the maximum salinity value (9.90%) was recorded in spring, while the minimum (9.30%) was recorded in winter. Also, hydrocarbon compounds in sludge samples were measured using Gas Chromatography - Mass Spectrometry (GC-MS), and the result showed that they were composed of 31 hydrocarbon compounds.In the present work, nineteen sludge degrading bacterial strains were isolated from the soil near Al-Dora refinery hole by primary and secondary screenings using a modified mineral salt medium supplemented with 1% (v/v) sludge as a carbon source. The most efficient two sludge degraded isolates identified by VITIK 2 compact were Kocuria rosea and Bacillus amyloliquefaciens. The tow isolates and there mixture showed best growth at 30°C for 12 days, as shown by the measurement of the optical density of the liquid culture and the final oil concentration by spectrophotometer.

     The bacterial isolates in liquid media with 2% (v/v) sludge showed best growth and the maximum biodegradation percentage after 12-day incubation period, as determined by gas chromatographic (GC). The degradation values were 68.9, 93.8 and 95.5% for Bacillus amyloliquefaciens, Kocuria rosea and the mixture of the tow isolates, respectively. In optimum conditions of pH 7, 40°C, 12 days incubation, the mixed bacterial consortium showed maximum sludge degradation.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Contamination of Agricultural Soils in Some Baghdad Areas with Antibiotics Resistant Pathogenic Fecal Bacteria
...Show More Authors

Background: Early studies have shown that agricultural soil contains various types of microorganisms, especially bacteria, including coliform bacteria (Salmonella, Shigella, Klebsiella, Escherichia coli, and Enterobacter) with fecal Gram-positive bacteria like Enterococcus faecalis. Therefore, the current study aimed to investigate the contamination of Iraqi agricultural soils with pathogenic fecal bacteria (Escherichia coli and Enterococcus faecalis) and study the antibiotic sensitivity patterns of soil-isolated bacteria because it is a dangerous indicator when transmitted to humans.

Methods: Soil samples were collected from six locations (farms) in the capital

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Potential Using of Mixed Microalgae in the Bioremediation of Domestic Effluents
...Show More Authors

Microalgae widely used for bioremediation of inorganic (NH4and PO4) nutrients as single isolates. This study aims to use a mix microalgae isolated from Dijlah river for bioremediation of municipal waste water .The experiments had been start with two different concentrations of nutrients. NH4-N values were 23.4 and 31.7mg/l, phosphorus PO4-P 6.7and 10.7 mg/ l and BOD5 were 66 and 83 mg/l. both cycles of treatment showed complete removal for NH 4-N and PO4-P levels after treatment were 1.7 and 0.7 mg/l for both of treatment cycle .Biological oxygen demand reduced to lowest value were18.9 in 2nd cycle while in 1st cycle of treatment reduced to21.3mg/l.The results showed that mix microalgae have the ability to remove nutrients and organic po

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Bioremediation of Soil Contaminated with Diesel using Biopile system
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the a

... Show More
Crossref (3)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Bioremediation of Soil Contaminated with 2,4-D Herbicide Using Bioslurry Reactor
...Show More Authors

Ex-situ bioremediation of 2,4-D herbicide-contaminated soil was studied using a slurry bioreactor operate at aerobic conditions. The performance of the slurry bioreactor was tested for three types of soil (sand, sandy loam and clay) contaminated with different concentration of 2,4-D, 200,300and500mg/kg soil. Sewage sludge was used as an inexpensive source of microorganisms which is available in large quantities in wastewater treatment plants. The results show that all biodegradation experiments demonstrated a significant decreases in 2,4-D concentration in the tested soils. The degradation efficiency in the slurry bioreactor decreases as the initial concentration of 2,4-D in the soils increases.A 100 % removal was achieved at initial con

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Feb 06 2024
Journal Name
Research Square
Bioremediation of Cellulosic Wastes by Using Orthodillo chiltoni (Vandel, 1973), Isopoda
...Show More Authors

Terrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species Orthodillo chiltoni (Vandel, 1973) as a model organism in bioremediation of urban environment with municipal wastes, agricultural fields, parks and markets wastes. Samples of these wastes included potato peels, orange fruit leaves, thyme plant and sawdust,cardboard residues , the experiments were carried out in laboratory condition similar to the living environment of this species in terms of temperature, humidity and intensity lighting. The applied results have shown that

... Show More
View Publication
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Using some Natural Minerals to Remove Cadmium from Polluted Water
...Show More Authors

Water scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Bioremediation of Heavy Metals Using Staphylococcus sp. in Shatt Al-Arab River
...Show More Authors

     Many species are resistant to heavy metals in their surrounding polluted environment and Staphylococcus sp. is an example. This study aimed to isolate and characterize bacteria resistant to heavy metals in the Shatt Al-Arab River in southern Basra, Iraq. Based on the morphology and using Vitek II system, and due to their high resistance to heavy metals (mercury and chromium), two species of Staphylococcus (Staphylococcus lentus and Staphylococcus lugdunensis) were chosen and isolated. The minimum inhibitory concentration (MIC) of the isolates against Hg and Cr was determined after 72 h. of incubation in solid media. All isolates were resistant to Hg (2000 mgL-1) and Cr (4000mgL

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reduction of Sulfur Compounds from Petroleum Fraction Using Oxidation-Adsorption Technique
...Show More Authors

Oxidation of sulfur compounds in fuel followed by an adsorption process were studied using two modes of operation, batch mode and continuous mode (fixed bed). In batch experiment oxidation process of kerosene with sulfur content 2360 ppm was achieved to study the effect of amount of hydrogen peroxide(2.5, 4, 6 and 10) ml at different temperature(40, 60 and 70)°C. Also the effect of amount acetic acid was studied  at the optimal conditions of the oxidation step(4ml H2O2 and 60 °C).Besides, the role of acetic acid different temperatures(40, 60, 70) °C and 4ml H2O2, effect of reaction time(5, 30, 60, 120, 300) minutes at temperatures(40,60) °C, 4ml H2O2 and 1 mlHAC)&

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Using Alternative Cogeneration Plants in Iraqi Petroleum Industry
...Show More Authors

The present paper describes and analyses three proposed cogeneration plants include back pressure steam-turbine system, gas turbine system, diesel-engine system, and the present Dura refinery plant. Selected actual operating data are employed for analysis. The same amount of electrical and thermal product outputs is considered for all systems to facilitate comparisons. The theoretical analysis was done according to 1st and 2nd law of thermodynamic. The results demonstrate that exergy analysis is a useful tool in performance analysis of cogeneration systems and permits meaningful comparisons of different cogeneration systems based on their merits, also the result showed that the back pressure steam-turbine is more efficient than other pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Advanced Oxidation of Antibiotics Polluted Water Using Titanium Dioxide in Solar Photocatalysis Reactor
...Show More Authors

The aim of this study was to investigate antibiotic amoxicillin removal from syn­thetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulate

... Show More
View Publication Preview PDF
Crossref (8)
Crossref