In this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required
Faintly continuous (FC) functions, entitled faintly S-continuous and faintly δS-continuous functions have been introduced and investigated via a -open and -open sets. Several characterizations and properties of faintly S-continuous and faintly -Continuous functions were obtained. In addition, relationships between faintly s- Continuous and faintly S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly S-continuous is weakly S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.
Background: Bladder cancer is among the most prevalent cancers worldwide, with 549,393 new cases reported in 2018. Approximately 3% of all new cancer diagnoses and 2.1% of all cancer deaths are due to urinary bladder cancer.
Objectives: This study aims to explore the efficiency of renal system functions as indicated by renal function tests and electrolyte levels among bladder cancer patients.
Methods: All patients in this case-control study were recruited from Ghazi Al-Hariri Hospital for surgical specialties in Baghdad during the period from December 2021 to June 2022. A total of 100 individuals were enrolled in this study and divided into two groups.
... Show Moreفي هذا البحث نحاول تسليط الضوء على إحدى طرائق تقدير المعلمات الهيكلية لنماذج المعادلات الآنية الخطية والتي تزودنا بتقديرات متسقة تختلف أحيانا عن تلك التي نحصل عليها من أساليب الطرائق التقليدية الأخرى وفق الصيغة العامة لمقدرات K-CLASS. وهذه الطريقة تعرف بطريقة الإمكان الأعظم محدودة المعلومات "LIML" أو طريقة نسبة التباين الصغرى"LVR
... Show MoreThe differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree
... Show MoreThe nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.