Preferred Language
Articles
/
ijs-1615
Extractive Multi-Document Summarization Model Based On Different Integrations of Double Similarity Measures

Currently, the prominence of automatic multi document summarization task belongs to the information rapid increasing on the Internet. Automatic document summarization technology is progressing and may offer a solution to the problem of information overload. 

Automatic text summarization system has the challenge of producing a high quality summary. In this study, the design of generic text summarization model based on sentence extraction has been redirected into a more semantic measure reflecting individually the two significant objectives: content coverage and diversity when generating summaries from multiple documents as an explicit optimization model. The proposed two models have been then coupled and defined as a single-objective optimization problem. Also, for improving the performance of the proposed model, different integrations concerning two similarity measures have been introduced and applied to the proposed model along with the single similarity measures that are based on using Cosine, Dice and  similarity measures for measuring text similarity. For solving the proposed model, Genetic Algorithm (GA) has been used. Document sets supplied by Document Understanding Conference 2002 ( ) have been used for the proposed system as an evaluation dataset. Also, as an evaluation metric, Recall-Oriented Understudy for Gisting Evaluation ( ) toolkit has been used for performance evaluation of the proposed method. Experimental results have illustrated the positive impact of measuring text similarity using double integration of similarity measures against single similarity measure when applied to the proposed model wherein the best performance in terms of  and  has been recorded for the integration of Cosine similarity and  similarity.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet Convolutional Neural Network Architecture with Cosine and Hamming Similarity/Distance Measures for Fingerprint Biometric Matching

In information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Oct 02 2015
Journal Name
American Journal Of Applied Sciences
Advances in Document Clustering with Evolutionary-Based Algorithms

Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research wor

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Theoretical And Applied Information Technology
Graph based text representation for document clustering

Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an

... Show More
Scopus (15)
Scopus
Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Multifocus Images Fusion Based On Homogenity and Edges Measures

Image fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Short Text Semantic Similarity Measurement Approach Based on Semantic Network

Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Intelligent Automation & Soft Computing
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
Auto Crop and Recognition for Document Detection Based on its Contents

An Auto Crop method is used for detection and extraction signature, logo and stamp from the document image. This method improves the performance of security system based on signature, logo and stamp images as well as it is extracted images from the original document image and keeping the content information of cropped images. An Auto Crop method reduces the time cost associated with document contents recognition. This method consists of preprocessing, feature extraction and classification. The HSL color space is used to extract color features from cropped image. The k-Nearest Neighbors (KNN) classifier is used for classification. 

View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Aro-the Scientific Journal Of Koya University
Crossref (1)
Crossref
View Publication
Publication Date
Tue Jan 25 2022
Journal Name
Iraqi Journal Of Science
Finding the Similarity between Two Arabic Texts

Calculating similarities between texts that have been written in one language or multiple languages still one of the most important challenges facing the natural language processing. This work offers many approaches that used for the texts similarity. The proposed system will find the similarity between two Arabic texts by using hybrid similarity measures techniques: Semantic similarity measure, Cosine similarity measure and N-gram ( using the Dice similarity measure). In our proposed system we will design Arabic SemanticNet that store the keywords for a specific field(computer science), by this network we can find semantic similarity between words according to specific equations. Cosine and N-gram similarity measures are used in order t

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

Crossref (1)
Crossref
View Publication Preview PDF