In this study, an approach inspired by a standardized calibration method was used to test a laser distance meter (LDM). A laser distance sensor (LDS) was tested with respect to an LDM and then a statistical indicator explained that the former functions in a similar manner as the latter. Also, regression terms were used to estimate the additive error and scale the correction of the sensors. The specified distance was divided into several parts with percent of longest one and observed using two sensors, left and right. These sensors were evaluated by using the regression between the measured and the reference values. The results were computed using MINITAB 17 package software and excel office package. The accuracy of the results in this work was ± 4.4mm + 50.89 ppm and ± 4.96mm + 99.88 ppm for LDS1 and LDS2, respectively, depending on the LDM accuracy which was computed to the full range (100 m). Using these sensors can be very effective for industrial, 3D modeling purposes, and many other applications, especially that it is inexpensive and available in many versions.
In this research we will present the signature as a key to the biometric authentication technique. I shall use moment invariants as a tool to make a decision about any signature which is belonging to the certain person or not. Eighteen voluntaries give 108 signatures as a sample to test the proposed system, six samples belong to each person were taken. Moment invariants are used to build a feature vector stored in this system. Euclidean distance measure used to compute the distance between the specific signatures of persons saved in this system and with new sample acquired to same persons for making decision about the new signature. Each signature is acquired by scanner in jpg format with 300DPI. Matlab used to implement this system.
The research seeks to identify the contemporary events that face the use of electronic payment methods to localize the salaries of state employees and its impact in enhancing the mental image of customers, and to achieve this purpose from the fact that a questionnaire was designed and distributed to an optional sample of (31) individual customers (employees) dealing With the researched private banks, it has been analyzed and reached a number of conclusions and recommendations, the most prominent of which is the lack of modernity of electronic payment methods by customers, which is reflected in the mental image of customers and the achievement of their satisfaction, in the Emiratization project for salaries needs an advanced leade
... Show MoreBackground: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show MoreIn this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
The effect of the optical feedback on the polarization flipping point and hysteresis loop was studied. The polarization flipping occurred at all angles between the polarizer axis and the laser polarization. The polarization flipping point changed by an optical feedback occurred at angles from 0° to 90°. Ability of choosing or controlling the laser polarization was determined by changing the direction of vertical and horizontal polarization by polarizer rotation in the external cavity from 0° to 90°.
The research work present a sensitive, accurate and fast developed for the determination of oxonium ion (HCl, H2SO4 , HClO4 and tartaric acid). It relies on the formation free iodine molecule from the I--IO3--H3O+ reaction which react with fluorescein sodium salt solution causing to quench the fluorescence light (continuous fluorescence) when irradiated by laser source at 405nm. Optimum parameters were studied giving to specify the chemical and physical parameters. Two line manifold was used. The flow rate of 1.3 and 1.5 mL/min was used, 35μL sample volume no.1 and sample volume no.2 , linear dynamic range extend from 0.05-7, 0.05-7, 0.1-10 and 0.1-10 mMol.l-1 with correlation coefficient of 0.9933, 0.9964, 0.9984 and 0.9973 for HCl, H2
... Show MoreThe appliance of milligauss meter was designed by Qusay Ismail to measure the induce of electromagnetic field for home appliance which are put at a distance from milligauss meter (15-30-60)cm .The results showed some appliance has recorded higher than normal acceptable level of electromagnetic radiation emissions and produced radiation of (350650)milligauss as for the rest of appliances has recorded values which are ranged between (1200)milligauss ,laptop was recorde radiation generally lower than from desktop and computer moniter (CRT).The radiation ,intensity decrease with increasing distance.
This article introduces the concept of finitely null-additive set function relative to the σ– ring and many properties of this concept have been discussed. Furthermore, to introduce and study the notion of finitely weakly null-additive set function relative to the σ– ring as a generalization of some concepts such as measure, countably additive, finitely additive, countably null-additive, countably weakly null-additive and finitely null-additive. As the first result, it has been proved that every finitely null-additive is a finitely weakly null-additive. Finally, the paper introduces a study of the concept of outer measure as a stronger form of finitely weakly null-additive.
Formation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreIn this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and
... Show More