This paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number.
In this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and
... Show MoreThe analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
The aim of this paper is the study of the influence of magnetic field on unsteady
flow of the second-grade fluid with constant viscosity. The equations which
controlled this type of fluid flow are complicated, so finding an analytical solution is
not easy, because it is a system of partial differential equations.We obtained an
expression for the velocity by using homotopy analysis method HAM.
It is found that the equations motion are controlled by many dimensionless
parameter, namely magnetic field parameter M and material constant α,
dimensionless film thickness β and unsteadiness parameter S.We have been studied
the influence of all the physical parameters, that mentioned above on the velocity
field, also a
A numerical study has been carried out to investigate heat transfer by natural convection and radiation under the effect of magnetohydrodynamic (MHD) for steady state axisymmetric twodimensional laminar flow in a vertical cylindrical channel filled with saturated porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected on the system are Rayl
... Show MoreThis paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynol
Theoretical and experimental investigations of free convection through a cubic cavity with sinusoidal heat flux at bottom wall, the top wall is exposed to an outside ambient while the other walls are adiabatic saturated in porous medium had been approved in the present work. The range of Rayleigh number was and Darcy number values were . The theoretical part involved a numerical solution while the experimental part included a set of tests carried out to study the free convection heat transfer in a porous media (glass beads) for sinusoidal heat flux boundary condition. The investigation enclosed values of Rayleigh number (5845.6, 8801, 9456, 15034, 19188 and 22148) and angles of inclinations (0, 15, 30, 45 and 60 degree). The numerical an
... Show MoreIn this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame
... Show MoreThe aim of this paper is the study of the influence magnetic field on steady state
flows and heat transfer in microchannels between two parallel plates.
It is found that the motion equations are controlled by many dimensionless
parameter, namely magnetic field parameter M Reynolds number Re, physical
quantity at wall W and Knudsen number Kn also found that the energy equations
are controlled by many dimensionless parameter, namely magnetic field parameter
M Reynolds number Re, physical quantity at wall W and Knudsen number Kn ,
Prinkman number Br and Peclet number Pe.
The equations which controlled this type of fluid flow are complicated, so finding
an analytical solution is not easy.
We obtained the velocit
The prediction of the blood flow through an axisymmetric arterial stenosis is one of the most important aspects to be considered during the Atherosclrosis. Since the blood is specified as a non-Newtonian flow, therefore the effect of fluid types and effect of rheological properties of non-Newtonian fluid on the degree of stenosis have been studied. The motion equations are written in vorticity-stream function formulation and solved numerically. A comparison is made between a Newtonian and non-Newtonian fluid for blood flow at different velocities, viscosity and Reynolds number were solved also. It is found that the properties of blood must be at a certain range to preventing atheroscirasis
In this paper, we study the peristaltic transport of incompressible Bingham plastic fluid in a curved channel. The formulation of the problem is presented through, the regular perturbation technique for small values of is used to find the final expression of stream function. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effect of the variation of the physical parameters of the problem are discussed and illustrated graphically.