Background: Human leukocyte antigen (HLA) is the most polymorphic genetic system in man. The genes of this region influence susceptibility to certain diseases.
Patients and methods: Immunofixation test is the method used to asses C4 polymorphism of 100 blood samples of 60 AIH patients and 40 healthy normal controls.
Results: An increased frequency of C4A*Q0 was observed for patients group versus control group with P-value (0.003).
Conclusions: This finding demonstrated that C4A*Q0 might play a role in AIH susceptibility.
This study examined the effect of essential oils extracted from peel of Citrus paradisi and Citrus sinensis on two species of fungi: Penicillium oxalicum and Fusarium oxysporum as well as effect of two fungicides: Carbendazim and Thiophanatemethyl against above fungi. Results showed that the essential oil of Citrus paradisi inhibited the radial growth of Penicillium oxalicum and Fusarium oxysporum at concentration 4%. Nevertheless, the essential oil of Citrus sinensis inhibited the radial growth at concentration 5 and 4%, respectively. Furthermore, the two studied fungicides inhibited radial growth of these fungi too. Therefore, there are a positive relationship between the evaluating of concentration and the percentage of inhibiting of rad
... Show More"In this article, "we introduce the concept of a WE-Prime submodule", as a stronger form of a weakly prime submodule". "And as a "generalization of WE-Prime submodule", we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule". "Various basic properties of these two concepts are discussed. Furthermore, the relationships between "WE-Prime submodules and weakly prime submodules" and studied". "On the other hand the relation between "WE-Prime submodules and WE-Semi-Prime submodules" are consider". "Also" the relation of "WE-Sime-Prime submodules and weakly semi-prime submodules" are explained. Behind that, some characterizations of these concepts are investigated".
... Show MoreLet R be a commutative ring with identity and let Mbe a unitary R-module. We shall say that a proper submodule N of M is nearly S-primary (for short NS-primary), if whenever , , with implies that either or there exists a positive integer n, such that , where is the Jacobson radical of M. In this paper we give some new results of NS-primary submodule. Moreover some characterizations of these classes of submodules are obtained.
A submodule Ϝ of an R-module Ε is called small in Ε if whenever , for some submodule W of Ε , implies . In this paper , we introduce the notion of Ζ-small submodule , where a proper submodule Ϝ of an R-module Ε is said to be Ζ-small in Ε if , such that , then , where is the second singular submodule of Ε . We give some properties of Ζ-small submodules . Moreover , by using this concept , we generalize the notions of hollow modules , supplement submodules, and supplemented modules into Ζ-hollow modules, Ζ-supplement submodules, and Ζ-supplemented modules. We study these concepts and provide some of their relations .
This study was aimed to investigate the effect of essential oil extracted from the yellow peels of Citrus aurantium on the growth of four species of fungi: Penicillium expansum, Penicillium oxalicum, Fusarium oxysporum and Fusarium proliferatum and effect of one fungicide: Aliette (fosetyl-aluminum) against these fungi. The results showed that the essential oil of C. aurantium inhibited the radial growth of P. oxalicum at concentration 4.5% while P. expansum and F. oxysporum at concentrations 5% and F. proliferatum at concentrations 5.5% additionally the one fungicide tested showed inhibitory effect on radial growth of these fungi. So that there is a negative relationship between the increasing of concentration and radial growth of fungi.
The aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.
Let R be a commutative ring with identity and let M be a unital left Rmodule.
Goodearl introduced the following concept :A submodule A of an R –
module M is an y – closed submodule of M if is nonsingular.In this paper we
introduced an y – closed injective modules andchain condition on y – closed
submodules.
Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever XXïƒW for all fully invariant R-submodule X of M, implies XïƒW. M is called fully semiprime if (0) is a fully semiprime submodule of M. We give basic properties of these concepts. Also we study the relationships between fully semiprime submodules (modules) and other related submodules (modules) respectively.
Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.