Crab shells were used to produce chitosan via the three stages of deproteinization, demineralization and deacetylation using sodium hydroxide and hydrochloric acid under different treatment conditions of temperature and time. The produced chitosan was characterized using Fourier transform infrared spectroscopy (FTIRS), X-ray diffraction (XRD), high – resolution scanning electron microscopy (HRSEM), electron dispersion spectroscopy (EDS), dynamic light scattering (DLS), Brunauer Emmett Teller (BET) and Thermogravimetric analysis (TGA). The adsorption behavior of chitosan to remove arsenic (As) and copper (Cu) from electroplating wastewater was examined by batch adsorption process as a function of adsorbent dose, contact time and temperature. The FTIR, XRD, HRSEM and EDS analyses confirmed, respectively, the presence of –NH2 and –OH functional groups, with amorphous/crystalline phases, crystallinity index of 69.54%, needle-like morphology and Carbon (C), Oxygen (O) and Nitrogen N) in the produced chitosan. While DLS, BET and TGA showed, respectively, that the produced chitosan has an average particle size of 729nm, is moderately polydisperse, has12.67 m2/g surface area, mesoporous in nature, and with thermal stability of up to 1430C. The optimum adsorbent dose, contact time and temperature values to remove As and Cu by chitosan were 15mg, 45 minutes, 333K and25mg, 60 minutes, 349K,respectively. Under the employed conditions, chitosan though has a low surface area, displaying high adsorption capacity for both metal ions. The adsorption isotherm data were better fitted to the Jovanovic isotherm model while the kinetic data fitted best to the pseudo-second order model. The thermodynamic studies established that the adsorption was feasible but endothermic in nature. This study shows that chitosan adsorbents purify electroplating wastewater.
Oxidation of sulfur compounds in fuel followed by an adsorption process were studied using two modes of operation, batch mode and continuous mode (fixed bed). In batch experiment oxidation process of kerosene with sulfur content 2360 ppm was achieved to study the effect of amount of hydrogen peroxide(2.5, 4, 6 and 10) ml at different temperature(40, 60 and 70)°C. Also the effect of amount acetic acid was studied at the optimal conditions of the oxidation step(4ml H2O2 and 60 °C).Besides, the role of acetic acid different temperatures(40, 60, 70) °C and 4ml H2O2, effect of reaction time(5, 30, 60, 120, 300) minutes at temperatures(40,60) °C, 4ml H2O2 and 1 mlHAC)&
... Show MoreIn this work, the adsorption of crystal violet dye from aqueous solution on charcoal and rice husk has been investigated, where the impact of variable factors (contact time; the dosage of adsorbent, pH, temperature, and ionic strength) have been studied. It has been found that charcoal and rice husk have an appropriate adsorption limit with regards to the expulsion of crystal violet dye from fluid arrangements. The harmony adsorption is for all intents and purposes accomplished in 45 min for charcoal and 60 min for rice husk. The amount of crystal violet dye adsorbed (0.4 g of charcoal and 0.5 g of rice husk) increased with an increasing pH and the value of 11 is the best
... Show MoreA new 4-thiazolidinone, substitutedbenzylidene-thiazolidinone and tetrazole were synthesized from thiosemicarbazone and hydrazone. The thiosemicarbazone was prepared by the reaction of thiosemicarbazide with aldehyde derivative from L-ascorbic acid in absolute ethanol using glacial acetic acid as a catalyst. 1, 3-thiazolidin-4-ones were synthesized from the condensation of thiosemicarbazones with chloroacetic acid in presence of anhydrous sodium acetate. A 1, 3- thiazolidine-4-one was reaction with several 4-substitutedaldehydes to produce new derivatives with a double bond at the position-5 of the 4-thiazolidinone ring. While the tetrazole compounds were synthesized by 1, 3-cycloaddition reaction of sodium azide and hydrazone compounds in
... Show MoreThe objective of this study was to evaluate the activity of dry metallic copper and colloidal silver solution to reduce the viability of P.aeruginosa isolates compared with stainless steel as a control. Three clinical isolates of P.aeruginosa (108, 110 and 111 ) which were multi antibiotics resistant tested by inoculating 107 CFU/ml on to coupons( 1cm x 1cm) of copper and stainless steel and incubated at room temperature for various time periods ranging from 30minutes up to 180 minutes .Bacterial viability was determined by plate viable count CFU/ml. The results on copper coupons shows complete killing of isolates after 120 min in contrast to stainless steel, viable organisms were detected after 180 min, indicating a significant P value
... Show MoreThe process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microsc
... Show MoreThe process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (
... Show MoreIn this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial co
... Show MoreSome physical properties enthalpy (?H), entropy (?s), free energy (?G),capacities(?cp?) and Pka values) for valine in dimethyl foramideover the temperature range 293.15-318.15K, were determined by direct conductance measurements. The acid dissociation at six temperature was examined at solvent composition x2) involving 0.141 of dimethyl foramide . As results, calculated values have been used to determine the dissociation constant and the associated thermodynamic function for the valine in the solvent mixture over temperatures in the range 293.15-318.15 k. The Pka1, and Pka2 were increased with increasing temperature.
sanaa tareq, Baghdad Science Journal, - Cited by 1
This work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the spe
... Show More